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The need for multidimensional signal processing in manifold areas of

applications is now well recognized. The important role of passive digital

filtering and related multidimensional modelling schemes in the general area of

multidimensional signal processing, and in particular, in the areas of image

processing, target tracking etc., has already been documented in an earlier

report [I] and thus, its discussion will not be undertaken here. A brief

description of the results obtained during the course of the present

investigation subsequent to those reported in [I] follows.

In chapter 1 properties of various multidimensional polynomials arising in

studies of passive (lossless) discrete multidimensional systems are

investigated. Reactance Schur polynomials and immittance Schur polynomials

occurring respectively as the denominators (and numerators) of discrete

reactance functions and discrete positive functions are introduced and their

properties studied. Role of these polynomials in scattering or immittance

descriptions of passive discrete time domain multiports are brought out. The

interrelation between classes of multidimensional polynomials arising in

discrete systems and the corresponding classes of polynomials in the context of

continuous systems is also studied via the mechanics of bilinear

transformation.

In chapter 2 the problem of structurally passive synthesis of multidimensional

digital filters of the quarter-plane causal type as an interconnection of more

elementary building blocks directly in the discrete domain has been addressed
via the factorization of the chain matrix, the hybrid matrix and the transfer

function matrix associated with a prescribed multidimensional lossless

two-port. By exploiting recent results on the discrete domain representation of

such matrices a generalized lossless two-port matrix has been introduced to
present all three factorizations in an unified setting. Necessary and

sufficient conditions for factorability as well as algorithm for computing

these factors when they exist are obtained. In particular, it is shown that in

one-dimension the factorizations can always be performed. Thus, in 1-D,

discrete domain algorithms for synthesizing previously unpublished internally

-- * m, .,. m md "meiinlnmlN~iI i 1



passive structures as well as alternative methods of synthesis for more

conventional structures such as the cascade structure are also obtained as a

byproduct of our discussion. Since most multidimensional applications dictate

that the filter be either symmetric or (quasi) antimetric, special attention is

paid to the problem of synthesis of these subclasses of multidimensional

lossless two-ports.

Due to difficulties inherent to the mathematics of quarter plane

multidimensional filtering, (e.g., polynomial nonfactorability etc.) the

alternative approach of studying passive filters of the fully recursive

half-plane causal type is undertaken in chapter 3 for the first time in the

literature. Apart from the tractability of analylis and design, such filters

have the potential to maximally exploit the currently emerging parallel (VLSI

and/or optical) architechture, when implementation is called for. Thus, passive

and lossless two-dimensional digital one-ports as well as two-ports of the

fully recursive half-plane type are introduced and are characterized in terms

of their transfer function descriptions. An algorithm for the structurally

passive synthesis of filters having such recursive structure is then derived

from these representation results as an extension of a recent Schur type

algorithm for the synthesis of discrete lossless two-ports. Design methods for

important practical cases when frequency response of the filter is required to

have specific symmetries are also presented.

Finally, results are summarized, conclusions are drawn and recommendations for

further work are made in chapter 4.

Each of the following chapters are self contained and can be read

independently. For similar discussions in the open literature we refer to the

publications [21, (3] and (41 in the following.
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MLTID IN I.ICL DIGrI7L FILTRS

2. 1. INROUCIC:

The scattering Hurwitz polynomials have been introduced recently as the

denominators of (rational) bounded functions arising in studies on passive

multidimensional (k-D) networks (1). Subsequently, the denominator polynomials

of (rational) reactance functions and (rational) positive functions have also

been characterized as the reactance Hurwitz and the immittance Hurwitz

polynomials respectively (2). We also refer to [31 for a related discussion. In

view of recent interest in synthesis of passive digital filter networks

directly in the discrete domain, a study of properties of the corresponding

polynomials arising in discrete time systems seems highly relevant.

Furthermore, it is now known to researchers in the field that unlike the I-D

case, in multidimensions discrete counterparts of certain continuous domain

results need not always be true (4-6). A separate treatment for discrete time

systems is thus needed for a more careful analysis. The first step in this

direction has been taken in 17) by studying the properties of discrete

scattering Hurwitz polynomials. In the present paper further properties of this

latter class of polynomilas are studied, discrete reactance Hurwitz polynomials

and discrete immittance Hurwitz polynomials, ocurring as the denominators (and

consequently the numerators) of discrete reactance functions and discrete

positive functions, are introduced and their properties, as they relate to both

single-port and multi-port passive digital networks, are studied in detail. It

is possible, at least in principle, to undertake the abovementioned discussion

via the utilization of multiple bilinear transform and analogous results

already existing [2] for continuous systems. However, it turns out, due to

difficulties of the type elaborated in (4-61, that such an indirect approach is

neither mathematically elegant nor is it desirable from the standpoint of a

self-contained theory of passive multidimensional discrete systems. Therefore,

the present paper has been organized in such a way that it can be read

indepedently of all existing publications on continuous systems.

In what follows we will consider polynomials a-a(z) in k-variables z -

(zl, 2,...zk). All polynomials and rational functions are assumed to be

functions of k-variables unless otherwise specified. A k-variable polynomial a

will said to involve a variable z i if the indeterminate zi actually exists in

4



at least one of the monomials comprising the polynomial a. A polynomial will be

called non-trivial if it involves at least one of the variables zi, i - 1 to k.

More generally, the above comments apply if a is a rational matrix function in
z i(zl,z 2,...Zk). If a - a(z) is written as a polnomial in zi as:

n.
a - Z' avz. (2.1.1)

W O- 1

where the coefficients a.'s are polynomials in the remaining variables with an.
% 0, then ni is called the partial degree of a in the variable zi and is to bi

denoted by degia. Occassionally, we will write in a compact notation z'-

(z 2, z3 ,...Zk). Two polynomials will be said to be relatively prime if they do

not have a proper (i.e., a non-constant) factor in common. A rational function
will be said to be in irreducible form if the numerator and denominator

polynomials are relatively prime. The discrete paraconjugate A of a polynomial

a - a(zl,z 2,..,zk) in k-variables z - (zl,z 2 ... ,zk) is defined as:
- n a- * *-i *-i *-In

a.z-?P. erR a - an(Z1 , z2  ...,zk  ), and the notation z' denotes the
monomial 11 z 2 2...zk , ni U degia. The superscript * denotes complex
conjugation. Note that the discrete paraconjugate of & is not necessarily equal

to a. The polynomial a will be called discrete selfparaconjugate if & - ya,
where y is a (necessarily unimodular) constant. In addition, a will be called
discrete paraeven or discrete paraodd according as y-l or r--l. The notation

Izi -< 1 will mean Izil < 1 for all i = 1 to k. Obvious variations of this

notation with the symbol > replaced by -, <, _, > etc. will be used.

The t-rms sequentially almost complete set e or sequentially infinite set e, as

defined in [2] will be used. In the present context, however, the elements of

the m-tuple (e,e2 ,...e m ) belonging to e will, unless otherwise specified, be

chosen from the field of real numbers modulo 2n.

we will have the occasion to consider the polynomial az associated with the
zn

polynomial a, as defined in the following. Let a-a(z)-a0 +a1 z+...anzn, where the

coefficients a i 's are polynomials in several variables over the field of

complex numbers. Then associated with a we define a polynomial az via the
nformal algebraic operation as: az -a z -b0+blZ+...bnz , where b i(n-2i)ai for

i - 0,1,...n. Further elementary properties of the polynomial az are derived
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in appendix 2c. More important definitions will be introduced as they become

necesary in the main text.

various classes of polynomials devoid of zeros in the unit polydisc will, in

general, be referred to as the multidimensional Schur polynomials. This is a

departure from the previously adopted terminology in 17),18], but is consistent
with the terminology used for the corresponding class of one-variable

polynomials in the literature. Properties of the widest sense Schur

polynomials, selfparaconjugate Schur polynomials and scattering Schur

polynomials are discussed in section 2.2. Section 2.3 contains discussion on

elementary properties of multidimensional discrete positive functions. In

section 2.4 reactance Schur and immittance Schur polynomials respectively

occuring as the numerators (and consequently denominators) of discrete

reactance functions and discrete positive functions are introduced. Extensions

of some of these results to passive multiports are discussed in section 2.5.

Finally, interrelationship between the various classes of multidimensional

Schur polynomilas and the corresponding classes of multidimensional Hurwitz

polynomials is examined via the artifice of bilinear transformation in section

2.6, and conclusions are drawn in section 2.7. An appendix is included, where

some general properties of multidimensional polynomials proved elsewhere are

stated, and a few basic formulae occurring in studies of discrete systems are

derived. For consistency in the logical sequence in which the proofs of results

are arranged in the present paper, theorems 2.2.2.7 and 2.2.2.8 should be read

after 2.3.6 and before corollary 2.2.3.7. However, theorems 2.2.2.7 and 2.2.2.8

are incorporated eaL.lier in section 2.2.2 rather than in section 2.2.3, beacuse

this allows for a more systematic categorization of the properties of various

classes of multidimensional Schur polynomials.
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2.2. VARIO.S CLASSES OF SCHUR POLYNOMIALS

2.2.1. Widest sense Schur polynomials:

Definition 2.2.1.1: A polynomial a is called widest sense Schur if a#O for Izi

< 1.

Theorem 2.2.1.2: If a(z) is a widest sense Schur polynomial in k-vhriables

Zm(ZlZ 2 ,...zk), then the polynomial a'(z') in (k-i) variables z' obtained by
freezing zI  in JzI l<1 is either widest sense Schur or is identically equal to

zero. Furthermore, the latter instance can occur only for finitely many values

of z1 on jzI1 -1.

Proof: Obviously a'(z') cannot be zero in Iz'j<1 for any 1zll<l, because if
for some z - zlO in 1zlol<l, a'(z') has a zero z' - z with Izl<l, then

a(Z 10, - 0, which contradicts the widest sense Schu? property of a(z).

Furthermore, if a'(z') - 0 for some z' - z in fII<1, and for z I - zlO on=0f

jzj-l then the following two possibilities arise. Firstly, if a'(z') a 0

i.e., a(zlo,z') n 0 for any z' then (z-zlo) is a factor of a(z). Obviously,

then there are finitely many values of z10 on jzlj-l, such that (z1-z10 ) is a

factor of a(z). This proves the second part of assertion of the theorem.

Next, to prove the first part, assume that a'(z') # 0, i.e., (zl-z 10 ) is not a

factor of a(z). Then by moving the variable z1 by sufficiently small amount

inside 1zl<l from zl-zl 0 , and by invoking the continuity property of zeros of

a polynomial we would be able to construct a zero of a(z) with I zll and

Iz<i, which contradicts the widest sense Schur property of a(z) and is thus

impossible.

A repeated application of the above theorem, along with the definition of

sequentially almost complete [cf. Appendix A] set yield the following result.

Theorem 2.2.1.3: let a(z) be a widest sense Schur polynomial in k-variazles z.

Then there exists a sequentially almost complete set of m-tuples em, of order

m<k, such that the (k-m) variable polynomial obtained by freezing m of the k

variables zi at zi - zi 0 with zi - exp(jei), 0 < e i < 2n for, say i - 1 to m,

i 1 1 i -

- . d • •u H + ' - . ...7



is widest sense Schur if (e1,2 ,.... m ) C 9m and is identically equal to zero if

2.2.2 Selfparaconjugate Schur Polynomials:

Definition 2.2.2.1: A polynomial a is called self-paraconjugate Schur if a * 0

for Izl<l and & - ya, where y is a complex number.

~k n.
Since &- a I z. we have for zi-exp(jei), i-l to k, 1 -1 - ll a - lal.
Thus the cohstant y in definition 2.2.2.1 is necessarily unimodular i.e.,

I l-1.

Lemma 2.2.2.2: Let a be a selfparaconjugate Schur polynomial in k-variables z,

and aXO be the (k-l) variable polynomial obtained by freezing in a one of the

variables, say zX , on fz.1 . 1. Then degia - degiaX for the remaining
variables i - 1 to k but i#X.

Proof: Assume XA). Let us write the polynomial a as in ~(2R.lA with i-1. Then

it follows from property 2.BB in the appendix that yan -a 0 U z. i. Furt ermore,
n1  0.21isince degia0<ni, it follows from the last equation tha i2an - 0( R z

.2
where Pi are some nonnegative integers. If an  w 0 for some X-zx0 62 zXl
irrespective of the other variables then (z-zXO) must be a factor of an , and
thus a factor of A0* This later conclusion, however imply that (zX-zx0i is a

factor of a0, and therefore a-O for zxmzx0 and zl-O irrespective of other
variables, and consequently, either aXE0 or aX is not widest sense Schur.

However, since aX0 by hypothesis, this is in contradiction with theorem 2.1.1.

Therefore, an )0 for any zX on Izxi-1. The validity of the present lemma for

other values o} i can similarly be demonstated by writting a as a polynomial in

z i with coefficients as polynomials in remaining variables.

Theorem 2.2.2.3: If a is a self-paraconjugate Schur polynomial in k-variables

then the polynomial a' in (k-l) variables obtained by freezing any one of the

variables, say zI, is also self-paraconjugate Schur for an almost complete set

of values on Iz11 - 1

Proof: From theorem 2.1.1, a' is widest sense Schur for an almost complete set

8
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of values of e1 in 0< 1 <2n, where zl-exp(j9 i) i.e., for an almost complete set

z on -zl 1. It remains to show that a' - y'.a', where y'is a constant. By

substituting z1-exp(je 1 ) in A-Ya it follows that
, ;1 ;1 k n.
a (exp(je1),z2 ,...zk )(exp(j 1n1 )) fR zi  = ya((exp(jel),Zl,...zk), where

ni-degia. The desired result then follows by noting that the right hand side of

the last equality is ya', whereas the left hand side due to the fact that

degia-degia'-n i (lemma 2.2.2.2)is equal to (exp(jnlel))A'.

Repeated use of the above result yields the following theorem.

Theorem 2.2.2.4: Let a be a self-paraconjugate Schur polynomial and a be the

polynomial obtained by freezing m, m<k, of the k-variables, say

zip i - 1 to m, on Izi l - 1 i.e., zi - exp(jO.) ; O<ei<2n. Then there exists a

sequentially almost complete set em of m-tuples of order m such that for any
(91,"2,...m )c9m , the polynomial am is selfparaconjugate Schur.

Theorem 2.2.2.5: Let a be a self-paraconjugate Schur polynomial. There exists

a sequentially almost complete set e of k-tuples of order (k-i) such that a - 0

for any zi - exp(jei); 0<i<2n, i - 1 to k, and (81,e 2 ,...ek)ce.

Proof: From theorem 2.2.2.4, the polynomial ak-1 obtained by freezing (k-1) of
the k variables, say zi, i-i to (k-i) o,, zi - exp(je i) ; O<9i<2n is

selfparaconjugate Schur for any (Gl,e 2 ,...k_l)eekl, where 'k-1 is a

sequentially almost complete set of order (k-i). Since the polynomial ak 1 -

akl(zk) is self-paraconjugate Schur, akl1O for IzkI<l as well as for Izki>l,

and thus ak has zeros on IZk1- 1 only. Therefore, there is a sequentially

almost complete set e of k-tuples of order (k-i) such that a - 0 for

We refer ahead to definition 2.2.3.1 for the statement, but not the proof of

the following theorem.

Theorem 2.2.2.6: A widest sense Schur polynomial a can be expressed as a

product of a selfparaconjugate Schur factor and a scattering Schur factor.

Proof: Let a-de, a-df, where d is the gcd between a and a, and thus e and f
are prime polynimials. From property 2.B6 in the appendix then a - yd. i.e.,

9



d is discrete self-paraconjugate. Since a is widest sense Schur so are both d

and e. Thus d is selfparaconjugate Schur. We further claim that e is

scattering Schur. Clearly, d.f = a = d.e - y.d.e and hence f - ye, where the

second equality follows from property 2.Bl in the appendix. Therefore, if e

and e had a common factor then e and f would not be relatively prime.

The following theorem characterizes selfparaconjugate Schur polynomials.

Theorem 2.2.2.7: A polynomial a is self-paraconjugate Schur if and only if a#O

for Izl< as well as for Izl>l.

Proof: Necessity: a#0 in Izf<l by definition. Furthermore, since a is

discrete self-paraconjugate, a zero of a in jz1>l would imply existence of a

zero of a in Izl<l, and is hence excluded.

Sufficiency: If a # 0 for jzI<l, then by theorem 2.2.2.6 a is product

of a self-paraconjugate Schur factor and a scattering Schur factor. However, a

factor of latter type, due to theorem 2.2.3.6 must have a zero in IzI>l, thus

implying a zero of a in jz>l, which is excluded.

Theorem 2.2.2.8: The irreducible factors of a selfparaconjugate polynomial a

are also selfparaconjugate Schur.

Proof: Obviously, the irreducible factors of a are widest sense Schur. Thus,

due to theorem 2.2.2.6, these factors are either selfparaconjugate Schur or

scattering Schur. However, presence of a factor of the latter type, due to

theorem 2.2.3.6, would indicate that a has a zero in Izl>l, which is ruled out

in theorem 2.2.2.7.

Lema 2.2.2.9: Let a be a selfparaconjugate Schur polynomial involving the

variable zi. Then deg, a - degXazi for X - 1 to k.

Proof: If X-i the proof is obvious from the definition of az . Next, let XAi,

and a be written as in (2.1.1). Since a is selfparaconjug1te Schur, and in

particular widest sence Schur, a0 cannot have a factor zX for any X, beacuse

otherwise a would be zero for zj-0, zi-0, and arbitrary values of the remaining

variables. Therefore, a0 must contain a monomial not involving z 1. Since from

10



n.
property 2.B8 in the appendix, an Ya0 I zi  , the ast stated property of0
yields that deg)an n. Furthermore, sin 'in a, - r' b z., b - -n..a weii V0 V I i

have degXbzi ' degai n . Consequently, deg\aziwnx .
deg, i

2.2.3 Scattering Schur Polynomials:

Definition 2.2.3.1: A polynomial a is called scattering Schur if a # 0 for

Izl<l,(i.e., a is widest sense Schur) and if a and a do not have any common

factor.

The term discrete scattering Hurwitz has earlier been used for the above class

of polynomials in 17),[8].

Theorem 2.2.3.2: If a is a scattering Schur polynomial, then a cannot have a

discrete selfparaconjugate factor.

Proof: If a had a factor d i.e., a - de, with d - ad, where a is a constant,

then a - de - doe, and thus a and a would not be relatively prime.

Corollary 2.2.3.3: A scattering Schur polynomial a-a(z) in one variable is a

strict sense Schur polynomial i.e., a#O for tzI~l.

Theorem 2.2.3.4: Let a be a scattering Schur polynomial in k-variables then the

polynomial a' in (k-l) variables obtained by freezing any one of the variables,

say z1, with z1 - exp(jO1 ); 0< 1<2n, is also scattering Schur for an almost

complete set of values of e1 .

Proof: Let a'(z') - a(zl 0 ,Z') with z10 - exp(j01 0 ), where el, is a fixed value

of el in 0<91<2n. Due to theorem 2.2.1.2, a' is either identically equal to

zero or is a widest sense Schur polynomial. However, in the former case

(Z-Zl0), which is selfparaconjugate Schur, is a factor of a, and thus excluded

due to theorem 2.2.3.2.

Next, the polynomials a and a are relatively prime by definition 2.2.3.1,

and thus the (k-l) variable polynomials a' - a(z') - [a)_ _ and [a]_ ._

with z10-exp(j010 ), due to property 2.A4 in the appendix, Arel elatively jriU

for an almost complete set 0 of values of Of0. However, since from property

112
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2.-7, zl=Z10 z10a, i zi , Pi>O- we have that a' and are relatively

prime polynomials, and thus a' is scattering Schur for all e10ce.

Extending the above result via a repeated application we obtain the following:

Theorem 2.2.3.5: Let a be a scattering Schur polynomial and let am be the

polynomial obtained from a by freezing m, m<k of the k-variables, say z., i - 1

to m on zi - exp(jei), 0<9i<2n. Then am is also scattering Schur for any

choice of the m-tuple (81,e2 ... em) e3 , where e is a sequentially almost

complete set of m-tuples of order m.

Theorem 2.2.3.6: A scattering Schur polynomial a must have zeros in lzt>l.

Proof: Let ak-1 be the polynomial obtained from a by freezing (k-i) of the

k-variables, say zi, for i - 1 to (k-1) on zi - exp(JG i ) 0<9i<2n. Then due to

theorem 2.2.3.5, there exists a sequentially almost complete set ek 1 of order

(k-1) such that for any (el,e 2 ,.... kl)c6k_l the polynomial ak_1 is scattering

Schur, and is thus, in view of corollary 2.2.3.3, a strict sense Schur
polynomial in the variable zk only. Therefore, akI has zeros in IzkI>l.

Consequently, a has zeros for Izil - 1, i - 1 to (k-i) and IZkI>l. Next, by
continuously moving the variables zi in the regions Izi>l for i - 1 to (k-l)

by sufficiently small amounts, and invoking the continuity property of zeros of

a polynomial as a function of its coefficients, it follows that a has zeros in

Izl>1.

Theorem 2.2.3.6 can, in fact, be strengthened in the following form.

Corollary 2.2.3.7: An irreducible polynomial a is scattering Schur if and only

if a * 0 for Izl<l and a has at least one zero in 1z>1.

Proof: Necessity of the theorem is obvious in view of theorem 2.2.3.6. To

prove sufficiency, let us note that a is widest sense Schur, and therefore, by

virtue of its irreducibility and by theorem 2.2.2.6 is either a

selfparaconjugate Schur or a scattering Schur polynomial. However, due to

theorem 2.2.2.7, a self-paraconjugate Schur polynomial cannot have zeros in

IzI>l. Thus, a is a scattering Schur polynomial.

12



Theorem 2.2.3.8: Let a be a widest sense Schur polynomial. Then a is also

scattering Schur if and only if the zeros of a on IzI-l does not form a

sequentially almost complete set of order (k-i).

Proof: Sufficiency: Assume for contradiction that d is the nonconstant

greatest common factor between a and a. By property 2.B6 in the appendix d is

a discrete self-paraconjugate polynomial. Invoking theorem 2.2.2.5, it follows

that a - 0 for zi-exp(jei), 0<ei<2,, for i - 1 to k with (e1,8 2,...k)9ce, where

e is a sequentially almost complete set of order (k-i). However, this latter

conclusion contradicts the fact that the zeros of a on Izimi cannot form a

sequentially almost complete set of order (k-i). The polynomial d is therefore

a constant, thus proving the scattering Schur property of a.

Necessity: If a-0 for zi - exp(j.i), O<ei<2n, i - 1 to k with (el,e 2,...ek)ce,

where 9 is a sequentially infinite set of order (k-i), then a(exp(jel),

exp(je 2),... exp(jGk)) - a (exp(jel),...exp(j8k ) U exp(jniei)-O, where ni -
degia, thus implying that a and a would have 11uentially infinitely many

comuon zeros of order (k-i) on 1zj - 1. Property 2.A3 in the appendix then

implies that a and a would have a common factor, which is impossible if a is

scattering Schur.

Theorem 2.2.3.9: (a) Factors of scattering Schur polynomials are scattering

Schur. (b) Conversely, products of scattering Schur polynomials are also

scattering Schur.

Proof: (a) Let a-bc be a scattering Schur polynomial. Obviously, then b and c

are widest sense Schur, beacuse a is so. Furthermore, since due to property

2.Bl in the appenix, a-bc, there cannot be a nontrivial common factor between b

and* b or between c and c, beacuse otherwiswe a and a would not be relatively

prime, and the scattering Schur property of a would thus be violated.

Therefore, b and c are both scattering Schur polynomias.

(b) Conversely, If a-bc with b and c scattering Schur, then clearly a is widest

sense Schur. Due to theorem 2.2.2.6 a is the product of a scattering Schur

factor and a selfparaconjugate Schur factor. However, irreducible factors of

the latter type are also selfparaconjugete Schur due to theorem 2.2.2.8, and

13



would thus be contained in either b or c, which in view of theorem 2.2.3.2,

violates the scattering Schur property of b or c. Therefore, a is a Scattering

Schur polynomial.

Theorem 2.2.3.10: Let a be a scattering Schur polynomial in k variables, then
the (k-i) variable polynomial a' obtained by freezing any one of the variables,
say zi, in lzij<l is also scattering Schur.

_Obiouy, a "('
Proof: Assume i - 1, and zI to be frozen at z -z Obviously, a' - a(z')

a(zl0 ,Z') is widest sense Schur. We only need to show that a, and a' are
relatively prime polynomials. If a' and a' are not relatively prime then the

greatest common factor d between them is by property 2.B6 discrete
self-paraconjugate, and thus is a selfparaconjugate Schur polynomial. Invoking
theorem 2.2.2.5 it then follows that d-0, and thus a - 0, for zi - exp(jei); 0
< Gi<2n for i - 1 to k, with el - (e21e3 .... e)ee', where el is a sequentially
almost complete set of order (k-2). Since a - 0 for zi - exp(jei) <e.<2n, i -

2 to k with ele e and for z1 - Zl0, theorem 2.2.1.3 along with the fact 1z101<l

yields that a - 0 for z. - exp(je.), 0<e.<2n, with e'c el and arbitrary zI .
Therefore, by restricting z1 on z1 - exp(je I) it is possible to assert that a -
0 for zi - exp(jei), 0<ei<2n, for all e-(91,92,...k) e, where e is a
sequentially almost complete set, and thus a sequentially infinite set of

k-tuples of order (k-i). This latter conclusion, in view of theorem 2.2.3.8
violates the scattering Schur property of a. The polynomials a and a' are thus

relatively prime.

Lemma 2.2.3.11: If a is a widest sense Schur polynomial and b a further

polynomial such that lb/al.<l for z on lzI-l whenever a,0, then lb/all for

Izl<1. Furthermore, if lb/al-i for some z in 1z1-1 then it is impossible to
have lb/al-1 for some z in Izldl unless b/a is independent of zi for all i

i.e., a constant.

Proof: Assume for the purpose of induction that the theorem is true for
polynomial and rational functions in (k-i) variables. Then due to theorem
2.2.2.3, the polynomial a' in (k-I) variables obtained by freezing z1 in a at
Z10 on Iz-1 is widest sense Schur for almost all (i.e., except finitely many)
choices of z10 on Izl-i. Also, let us define the (k-l) variable polynomial

14



d'-d'(z')-d(zl 0 ,Z). Now since a'-a'l(z')0 implies a(zl0, 1z')0, if jb/aI<l for

IzI-.l, whenever a#O then we have that Ib'/a'l_< for Iz'I-l, whenever a'#0.

Consequently, by invoking induction hypothesis we may assert that Ib'/a' I_ for

tz' 1<1.

Consider next the polynomial a,-a(zl,j) and b1-b(zl), where s6 is

considered frozen in Iz'I<1. Obviously, a1 0 in Izl1 <l. Furthermore, from the

conclusion of the last paragraph it follows that 1al/bl)l for almost all zI on

jZ1 -l. Thus, via an application of the known maximum modulus principle for

rational functions of one variable, we conclude that Ibl/a 1 1<l for [zIf<l.

Since i is chosen arbitrarily in iz' <l, the latter conclusion yields Ib/a l<

for zl<l.

Finally, the last statement of the present theorem follows from the the known

result 191 that a function of several complex variables cannot reach a maximum

at a point interior to the domain of holomorphy unless it is a constant.

Theorem 2.2.3.12: (a) If a is a nontrivial scattering Schur polynomial then

a/ajl for 111<l. (b) Conversely, if b and a are relatively prime polynomials

such that Ib/ai<l for 111<1 then a is either a scattering Schur polynomial or

a nonzero constant.

Proof: (a) Since 1a/al-l for Izi-l, whenever a#O, the result follows

immediately from lemma 2.2.3.11.

(b) Clearly, a#O for 1I<1, beacuse if a(E0)-0 with IzR01< then in order for

Ib/aI<l to be satisfied we would necessarily have b(z0)-l i.e., the rational

function b/a would have a nonessential singularity of second kind at

Consequently, b/a would also have a singularity of first kind in an arbitrarily

small neighbourhood of E. lying entirely within Izidl [i01, thus violating the

condition lb/a l1 for Iz<l.

Next, we claim that if a is not a constant, and if a(0)-0 for some 0 with

1!01-1, then b(z0)-0. To substantiate this claim consider the open connected

set Q of points z lying in a neighbourhood of.E0 as well as inside 1z<1.

Obviously, lb/a l< and a#O for zcQ. It then follows by invoking the continuity

15



of the function b/a in 2 that if a(zo)-O then also have b(o)-O. Now, since the

polynomials a and b are relatively prime the set of zeros common to them

cannot, due to propertty A3, form a sequentially almost complete set of order

(k-1). Thus, the set of zeros of a on IzI-1 does not form a sequentially almost
complete set of order (k-i). It then follows by invoking theorem 2.2.3.8 that a

is a scattering Schur polynomial.

Corollary 2.2.3.13: Let the rational function p-b/a be such that a is widest
sense Schur and Ip<l for all those z on 1z1-1 for which a#0. Then, if p=bVao

in irreducible form then a0 is scattering Schur.

Proof: Follows immediately from lemma 2.2.3.11 and theorem 2.2.3.12.
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2.3. MIMITR PWPERTIES OF (k-D) RATI(a L DISCRETE POSITIVE MWCIONS:

Definition 2.3.1: A rational function C will be called discrete positive if Re

_ 0 for IzI<l.

A discrete positive function C - jC, where C is a real constant, is said to be

trivial. All other discrete positive functions are said to be non-trivial.

Definition 2.3.2: A discrete positive function C-b/a with a, b polynomials,

will be said to be a discrete reactance function, if in addition, it satisfies:

(b(b/a) b/a) - 0.

Len=a 2.3.3: let C' - C'(z') be the well defined rational function in (k-l)

variables obtained by freezing in the k-variable rational function C - C(z) the

variable z1 on jzj1-1. Then if C is discrete positive real so is C'.

Proof: From definition 2.3.1 via the use of arguments similar to those used in

the proof of lemna 2.5.11.

Theorem 2.3.4: A discrete positive function C is non-trivial if and only if

ReC > 0 for IzI<l.

Proof: If is a trivial positive function, then ReC - 0 for all z, and in

particular for IzI<l. On the otherhand, if C involves one of the variables,

say zl, then let us freeze all other variable z' - (z 2 ,z 3 ,.. .z k ) at z' - i6 in

Iz'<1 in C and let the resulting function be called C'. Then C', due to lemna

2.3.3, is a non-trivial discrete positive function of one variable z1 only, for

which it is well known that ReC'>0 for jz11<l. Since 6 is chosen arbitrarily

in izl<l, the present theorem is established.

Theorem 2.3.5: If C-b/a, with a and b polynomials, is a discret positive

function in irreducible form then both a and b are widest sense Schur

polynomials. Furthermore, neither a nor b may have selfparaconjugate Schur

factors of multiplicity larger than one.

Proof: Consider the nonconstant rational function p - (l-C)/(i+R) -
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(a-b)/(a+b), which is necessarily in irreducible form. We have Reo k 0, and

consequently Jpj<l for Izl<l. Therefore, due to theorem 2.2.3.12(b), (a+b) is

scattering Schur. Thus, p is holomorphic in Izl<l, and consequently, the

maximum modulus theorem for functions of several complex variables [9] implies
that jpj<1 in IzJ<l. Now, if b(z0 )*0 but a(z0)-0 or b(z0)-0 but a(z0 )*0 with

IzE01< then we would obviously have Ip(z0)1-l, which is impossible.
Furthermore, if for some z with Iz01<1, a(z0) - b(z0 )-0, then p would have a
nonessential singularity of the second kind at z - z0. However, p would then

also have a singularity of first kind in an arbitrarily small neighbourhood of
K-z0 contained in IzI<l 1101, which is ruled out by Ipj<l.

To prove the second part, let b - e.fn where e,f are polynomials such that
f is discrete selfparaconjugate and does not divide e. Then due to theorem

2.2.1.3 there exists a sequentially almost complete set G' of (k-1) tuples of

order (k-i) such that the one variable polynomial b'-b'(z 1 ) in the variable z1

obtained by freezing in f the remaining variables at zi - exp(jei), i - 2 to k
with e'-(e2 ,e 3 ,...ek)ce' is also widest sense Schur, where e' is a sequentially

almost complete set of order (k-i). Let a' and f' be the polynomials obtained
by freezing respectively in a and f the variables zi at zi - exp(j9 i) for i - 2

to k. Then, since the pair (a,f) is coprime, due to property 2.A4 in the

appendix, there exists a sequentially almost complete set 9" of (k-l) tuples of

order (k-i) such that for any choice of e'-( 21e3 ,...k) ce", the pair (a',f')
is also coprime. Therefore, if e'e(enf' 9") then the one variable rational
function C'(z 1) - b'(z 1 )/a'(zI) is well defined, and in its irredicible form

the numerator polynomial b' contains the factor f'-f'(z 1 ) of multiplicity n.

Note that the polynomial f', due to theorem 2.2.2.3, is selfparaconjugate

Schur. Furthermore, due to lemma 2.3.4, C' is a discrete positive function in
one variable, and is thus devoid of multiple zeros on the unit circle 1Zl-i.
Consequently n-l.

Assertion 2.3.6: Let - b/a be a discrete positive function. Then C is a

reactance function if and only if degib - degia for all i - 1 to k and b/a - -

b/a.

Proof: let ? - d/c in irreducible form, where b - ed and a - ec, e being the

g.c.d between a and b. Then due to property 2.51 in the appendix, b/a - b/a
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. .k nci-ndi
implies d/c - - d/c - -(d/c) 1 z I, where n ci degc. ndi egidfori

1 to k. Also, due to properA 1 2.B2 in the appendix a, and d does not contain a

factor zi for any i. Furthermore, c and d, being numerator and denominator of

irreducible discrete positive function, cannot have a zero in zA<l due to
theorem 2.3.5, and thus cannot have a factor zi for any i. Consequently, nci W

ndi for all i, therefore, degib - degie + n=dege+ degia for all i -

1 to k. Furthermore, b/a - d/c - d/c - (d.e)/(c.e) - - b/a, where the last

equality follows from property 2.Bl in the appendix. Conversely, if degib -

degia for i - 1 to k, then obviously b/a - b/a. Thus, if C - b/a is a discrete

positive function with b/a m - b/a, we would also have b/a + b/a - 0 implying

that C is a reactance function.

Notice, however that a discrete positive function can have a non-zero

difference in partial degree between its numerator and denominator. Consider,

- l+[(l-zlz 2 )/(l+z1z2 )) - 1l+z1Z2
]- I, which is a discrete positive function.

Theorem 2.3.7: If a rational function - b/a satisfies: (i) a is scattering

Schur (ii) Re QO for (zf-1, whenever a*O then Re& _ 0 for )zJ < 1 i.e., C is a

discrete positive function.

Proof: Let us assume for the purpose of induction that the theorem be true for

(k-i) variables. Also, let the polynomial a'-a'(z')-a(zlo,z') and the rational

function C'-C'(z')-C(z 1o,z') be defined by freezing respectively in a and in C

the variable Z1 at zl0 on tz1 l-l. Since a is scattering Schur, due to theorem

2.2.3.4, a' is scattering Schur for an almost complete set of values z10 on

1Z11-l. For those z' on JA'I-l for which a'*O, we have a(zlo,z')#O, and

consequently, due to condition (b) of the present theorem, ReC'-ReC(z lo,')>O.

Then due to te induction hypothesis it follows that ReC'>O for )z' )< for an

almost complete choice of z10 on z1 ...

Consider next a1-a1(z1 )-a(z , ) and C1-C(Zl)-C(zl,6), where A6 is frozen in

1161<1. Then from the conclusions of the last paragraph it follows that the

one-variable rational function C1 satisfies ReYl>O for an almost complete set

of values on izlI~l. Furthermore, a1, due to theorem 2.2.3.10 and corollary

2.2.3.3, is a strict sense Schur polynomial in z1 only. Therefore, from a

classical one-variable result it follows that Re(l>O for z11<1. Since s is

19



arbitrarily chosen in Iz'I<l, the last condition yields that ReO for 1z<1,

thus completing the proof of the present theorem.

Remark 2.3.8: The above theorem, in the one variable case, can be obtained from

an application of lemma 2.2.3.11 with the nonrational function exp(-C).

However, since a multidimensional version of lemma 2.2.3.11 valid for

nonrational functions is not known to us, a separate proof of theorem 2.3.8 is

needed.

Theorem 2.3.9: If C-b/(ac) is a discrete positive function in k-variables z,

where a is a scattering Schur polynomial and c is a reactance Schur polynomial

in one variable only then C can be decomposed as C-(c'/c)+(a'/a), where c'/c is

a one variable discrete reactance function and a'/a is a discrete positive

function in k-variables z.

n

Proof: Let c- £ ci, where ci-(zi-Ozi) with tail-i and ails are necessarily

distinct. Consiar the rational function K (z') - [(zl-% )b/acl z -M , which is

obviously holomorphic in Iz'<1. Furthermore, for all s6 with 1 2 (v ) is

the residue of the one-variable discrete positive function 1 M 1(zl)=Mzl, )
at zl-%, and is thus real and positive. Since a function of several complex

variables, which is real and holomorphic in a domain must be equal to a

constant we have that K(z')-K-constant. Also, since the polynomial

h-h(z)-b-a Z Kic/c i satisfies h(% ,z')nO, (zi-% ) must be a factor of h for

each v N.., h-ca' for some polynomial a'-a'(z). It then follows by

straightforward algebraic manipulation that C-(c'/c)+(a'/a), where

c'- E Kic/c i . Clearly, c'/c is a one-variable discrete reactance function, and

theeore, Re(c'/c)-O for 1zll-l, whenever c*0. Since C is a discrete positive

function, ReC._O for 1z1-1, whenever C is regular. Therefore, Re(a'/a)>0 for

Izi-l, whenever au0. It then follows via the use of theorem 2.3.8 that a'/a is

a discrete positive function.

Theorem 2.3.10: Let C-b/a, where a and b are relatively prime polynomials. Then

C is a discrete positive function if and only if (a+b) is scattering Schur, and

ReQ.>O for zJ-l, wherever C is regular.
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Proof: Consider the rational function P-(l-C)/(l+C)-(a-b)/(a+b) in irreducible

form and notice that ReC>O if and only if jpIl.

Necessity: Since ReCO for Izj<l we have Ip<_l for jzLl. Therefore, due to

theorem 2.2.3.12(b), (a+b) is scattering Schur. Finally, the fact that Re>O

for all regular points of on IzI-l follows from lemma 2.3.3.

Sufficiency: If a+b#O but a-0 for some z then pl-1. On the other hand, if

a+b#O but a*O for some z-z0 with I01-l then p is regular at K0' and

consequently, ReC(z0)>O, thus implying Ip(z0)<l. Therefore, jpj l for IzI-l,

whenever a+b#O i.e., p is holomophic. The result then follows from lemna

2.2.3.11 via the use of the fact that (a+b) is scattering Schur.

We have the following important result.

Theorem 2.3.11: If a is a widest sense Schur polynomial involving one of the k

variables, say zi , then az /a is a discrete positive function.
1

Proof: Assume i - 1. Since a is widest sense Schur the polynomial a in one

variable zI obtained by freezing in a the variables zii-2 to k inside Iz i< 1,

is widest sense Schur. The result then follows from property 2.C3 in the

appendix by noting that Re(a z/a) - Re(a z/a)>O for 1z<l.

Theorem 2.3.12: If a is a selfparaconjugate Schur polynomial involving one of

the k variables, say zi , then a ./a is a discrete reactance function (not

necessarily in irreducible form). 1

Proof: Assume i - 1, and a - ya. The fact that az /a is a discrete positive

function has been proved in theorem 2.3.11. If a is expressed as a polynomial

in zI with coegficients as polynomials in z' i.e., in the form (2.1.1) with i -

1, then az  M 1 b z I , where b. M (n -2v)a for -O,l ,... n. Furthermore, from1 V-0 V11 V1

lemma 2.2.2.9 we have that degiazi M degia - ni for i - 1 to k. Therefore,

a 1.- V k n. nI - V k n.
av ( Zb Z H - E.- (nI- 2v)a z )( a zi ) (via the substitution b

- -0 i- n  -0 1-v i-2 v

M (n 1-2v)a)- r1 -(n -2v)yaV z (via the use of equation (2.A1)--y Elb z -
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- az . Therefore, (a z/a) + (a z )/a - 0. The fact that a z/a is a discrete

reactance function then following by invoking assertion 2.3.6.

Corollary 2.3.13: If a is an irreducible widest sense (discrete

selfparaconjugate) Schur polynomial involving the variable zi then a z/a is a

discrete positive (reactance) function in irreducible form. z

Proof: Immediately follows from theorems 2.3.11, 3.12 and property 2.C2 in the

appendix.

Theorem 2.3.14: If a is a widest sense Schur polynomial involving the variable

z i then the polynomial a is also widest sense Schur.

Proof: let az /a - c/b, a - bd and az. - cd, d being the g.c.d between aZ. and

a. Then due to theorem 2.3.11, c/b i discrete positive and consequently'. due

to theorem 2.3.5, b and c are widest sense Schur polynomials. Furthermore, the

polynomial d, being a factor of a, which is widest sense Schur, is also widest

sense Schur. Thus a - c.d is widest sense Schur.zi

Theorem 2.3.15: If C - b/a is a nontrivial discrete positive function in

irreducible form then f - xa + jyb is widest sense Schur for all real x and y

not simultaneously zero. Conversely, if the polynomial f - xa+jyb is widest

sense Schur for all real x and y not simultaneously zero then either b/a or

(-b/a) is a discrete positive function.

Proof: If b/a is a nontrivial discrete positive function in irreducible form

then due to theorem 2.3.5, a*O, b*O for Izl<l. Consequently, if f(z0) - 0 for

some 0 in IzI<l then b/a - j(x/y)., implying Re(b/a) - 0 for z - 0 in I£I<i.

The latter conclusion, in view of theorem 2.3.4 contradicts with the fact that

(b/a) is a nontrivial discrete positive function. Conversely, if f is widest

sense Schur for all real x and y except x - y - 0, then a and b are also widest

sense Schur, because if a(4) - 0 (or b(z0)-0) with Iz01<1, then f(z0) - 0 for

y - 0(or x - 0) and for arbitrary x(or y). Thus, Re(b/a) is a continuous

function of z in jzj<l. Furthermore, Re(b/a) * 0 for any z in Jzl<, because

otherwise b/a -- jy/x,
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i.e., xa+jby - 0 for some real x and y not simultaneously zero. Thus, by

continuity of b/a in lzj<l, if Re(b/a)>0 (or <0) for some z in Izi<1, then

Re(b/a)>0 (or < 0) for all IzI<l.

Corollary 2.3.16: The rational function C - b/a, where b and a are relatively

prime polynomials, is a nontrivial discrete positive function if and only if

(x2 a 2+y2 b 2 ) is a widest sense Schur polynomial for all real x and y except x =

y - 0.

Proof: Since (x2 a 2+y2 b 2)-(xa+jyb)(xa-jyb), the above corollary clearly follows

from theorem 2.3.15 and the obvious fact that a polynomial is widest sense

Schur if and only if its factors are widest sense Schur.

We note that the above result is a discrete k-D counterpart of a result

originaly proved by Brockett [11) in the 1-D context. The k-D continuous

counterpart of corollary 2.3.16 is obtained in [5], however, via a proof

technique entirely different from the one presented here.
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2.4. TM IRNM SCWR AND INITRNE SCuM POLWNIALS:

Definition 2.4.1: A selfparaconjugate Schur polynomial a is said to be

reactance Schur if the irreducible factors of a do not occur with multiplicity

larger than one.

The following results imediately follows from the above definition.

Theorem 2.4.2: (a) Products of reactance Schur polynomials that are pairwise

relatively prime are reactance Schur polynomials. (b) Any factor of a

reactance Schur polynomial a is also a reactance Schur polynomial.

Proof: (a) Follows from the fact that the product of selfparaconjugate Schur

polynomials is also selfparaconjugate Schur. (b) We note that definition 2.4.1

and theorem 2.2.2.8 imply that the irreducible factors of a are

selfparaconjugate Schur, and are thus reactance Schur. The result then follows

by appealing to part (a) of the present theorem.

Theorem 2.4.3: (a) The numerator and denominator of a discrete reactance

function, written in irreducible form, are always reactance Schur polynomials.

(b) Conversely, each discrete reactance Schur polynomial b is the denominator

(and consequently the numerator) of a discrete reactance function in

irreducible form.

Proof: (a) If C-b/a is discrete reactance function, and in particular a

discrete positive function in irreducible form, then due to theorem 2.3.5, a is

a widest sense Schur polynomial devoid of multiple discrete selfparaconjugate

factors. Furthermore, since a is a widest sense Schur it cannot contain zi as

a factor for any i. Thus, degia-degia for i - 1 to k. Since from assertion

2.3.6 we have b/a - - b/a, in irreducible form, we must have a - Ya, where Y is

a constant i.e., a is selfparaconjugate Schur. Since irreducible factors of a,

due to theorem 2.2.2.8, are also selfparaconjugate Schur, they must occur in a

with multiplicity equal to one. Therefore, a is reactance Schur. Similar

arguments apply to b.

(b) Lat bi, i - 1,2,...n be the nontrivial irreducible factors of b, which are

also reactance Schur due to theorem 2.4.2. Let bi involve the variable zX(i)
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n
and consider the rational function - 4i, where #i  (bi)Xli)/b i . Since

from theorem 2.3.12, each is a discrW reactance functAon, their sum is
also a discrete reactance function. Let * - c/b, then c - Z ((bi)(i) H

by). It then follows by appealing to property 2.C2 in the appendix that c and

b are relatively prime polynomials.

Theorem 2.4.4: If the polynomial a is nontrivial and is scattering Schur, then
the discrete paraeven and the discrete paraodd parts of a respectively denoted
by ae=(a+&)/2 and ao=(a-&)/2 are relatively prime reactance Schur polynomials.

Proof: Since a is scattering Schur the rational function p-a/a, due to
definition 2.2.3.1, is in irreducible form and satisfies (pl< for Izl<l.

Therefore, if C - (l-p)/(l+P) - (a-a)/(a+a), then C is a discrete positive

function (i.e. ReC > 0 for IzI'<1) in irreducible form. Consequently, due to

theorem 2.3.5, both ae = a+a and a0 - a - a are widest sense Schur. The facts
that ae and a0  are respectively paraeven and paraodd follows from property
2.B10. Therefore, ae and a0 are selfparaconjugate Schur. Furthermore, by
appealing to the second part of theorem 2.3.5 it follows that irreducible
factors of ae and a0 , which by virtue of theorem 2.2.2.8, must be
selfparaconjugate Schur, must not occur with multiplicity higher than one.

Therefore, a0 and ae are reactance Schur polynomials.

It is now possible to derive the converse of theorem 2.4.4.
Theorem 2.4.5: If b is a discrete paraeven (or discrete paraodd) reactance
Schur polynomial then there exists a discrete paraodd (or discrete paraeven)
reactance Schur polynomial c, relatively prime with b, such that (b+c) is
either a nonzero constant or a nontrivial scattering Schur polynomial.

Proof: Consider the irreducible discrete reactance function C - c/b, the
existence of which has been demonstrated in theorem 2.4.3(b). Since due to

assertion 2.3.6 we have (c/b) + (c/b) - 0, b - + b impliesc= + c. Thus, if b
is paraeven (or paraodd) then c is paraodd (or paraeven). Furthermor_, the

rational function p - (1-)/(l+) - (b-c)/(b+c) is irreducible form, and

satisfies IpI<<l for Iz1l<. Consequently, due to theorem 2.2.3.12(b), (b+c) is
either a nonzero constant or scattering Schur polynomial.
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In the above theorem it is indeed possible to have b+c - constant. Consider b

-1 + zlz 2, c - 1-z1z2.

The following is an yet alternate characterization of reactance Schur

polynomials.

Theorem 2.4.7: Let a be a selfparaconjugate Schur polynomial. Then a is

reactance Schur if and only if the set of (k+l) polynomials aa 2. a do

not have a proper common factor.

Proof: In view of property 2.C2 in the appendix, it follows that the

irreducidble factors of a are simple if and only if the set of (k+l)

polynomials aaz ,...a z  do not have a proper common factor. The result then

follows by appealing to .he definition 2.4.1 of reactance Schur polynomials.

Definition 2.4.8: A polynomial a is said to be immittance Schur if it is the

product of a scattering Schur polynomial and a reactance Schur polynomial.

The following result clearly follows.

Theorem 2.4.9: (a) Factors of immittance Schur polynomials are immittance
Schur. (b) Products of immittance schur polynomials that do not have a discrete

selfparaconjugate factor in common are also immittance Schur. (c) The least

common multiple of a set of immittance Schur polynomials is also immittance

Schur.

The following result is an obvious consequence of theorems 2.3.5.

Theorem 2.4.10: The numerator and denomiantor polynomials a and b of a discrete

positive function C-a/b in irreducible form are necessarily immittance Schur.

Theorem 2.4.11: If a is a polynomial involving zi and is immittance Schur then

the polynomial a z is also immittance Schur.

Proof: Let az /a - b/c, with az. - b.d and a - c.d, where d is the gcd between

az.. Due to aeorem 2.4.9, d isIimmittance Schur. Since the polynomials b and
c are relatively prime, the rational function b/c, due to theorem 2.3.5 is a
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discrete positive function in irreducible form. Consequently, by virtue of

theorem 2.4.10, b is an immittance Schur polynomial. Let d contain a

selfparaconjugate Schur factor e. Since e is a factor of a, which is

imnittance Schur, e occurs in a with multiplicity one. Now, if e involves z.1
then a., by property 2.C2, does not contain the factor e, which contradicts

a z.- Ld. Therefore, d cannot contain e, and in particular, b and d do not

ha'e discrete selfparaconjugate factors involving zi in common. On the other

hand, if e does not involve z then the multiplicity of e in a and az. must be
the same. Also, since a-c.d is immittance Schur, c cannot contain a actor e.

Thus, b cannot contain the factor e, beacuse otherwise the multiplicity of e in

az. would be larger than in a. Therefore, b and d cannot have a discrete

selfparaconjuyate factor not involving zi in common. Therefore, b and d cannot

have a common selfparaconjugate Schur factor, thus confirming the immittance

Schur property of az. - b.d in view of theorem 2.4.9.1

Theorem 2.4.12: The denominator of a rational discrete positive function in

irreducible form is an immittance Schur polynomial. Conversely, every

immittance Schur polynomial is the denominator of a discrete positive function

in irreducible form.

Proof: The first half of the present theorem has already been proved in

theorem 2.4.10. To prove the second half let a - e.f, where e and f are

respectively the scattering Schur and reactance Schur factors of a (cf. theroem

2.2.6). Notice that e and f are relatively prime due to theorem 2.2.2.8 and

2.2.3.2. Since e is scattering Schur, theorem 2.2.3.12(a) yields I#/etl for

lj<l implying Re[l+(e/e)>0 for IzIjl i.e., [l+(e/e)J is a discrete positive

function. Furthermore, since f is reactance Schur, by virtue of theorem 2.4.3,

there exists a polynomial g, such that g/f is a discrete reactance function

(and thus a positive function) in irreducible form. Therefore, l+(e/e)+(g/f) -

p/a, where p - e(f+g)+ef - (e+e)f+eg is a discrete positive function. It

remains to show that p and a-ef are relatively prime polynomials. Clearly, if

e and p had a factor in common, then e and (ef) would have a factor in common.

However, e, being scattering Schur, is relatively prime with e , and cannot

have a factor in common with f as stated earlier. On the other hand, if f had

a factor in common with p then it would have a factor in common with eg. Since

g/f is an irreducible rational function, this later situation implies that e
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and f would have a factor in commnon, which is again impossible. Thus, p/a is

an irreducible rational function.
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2.5. ETENrSIONS TO PASSIVE MJLTIPORT SCTrERING AND IIT1NCE PUNCTINS:

The following results generalize the above discussion on the scattering or

immittance description of k-D discrete passive multidimensional systems to

multiport systems.

Definition 2.5.1: An (NxN) rational matrix HTH(z) is said to be discrete

bounded if H is holomorphic in Jzj<l and (IN-HH ) is nonnegative definite at
all regular points of H in the domain 1z<l.

We shall need the following extensions of lemma 2.2.3.Wl for further

developments to follows. Let us consider the function p-p(z)- E 1pi(z) , where
each Pi-bi(z)/ai(z) with ai-ai(z), bi-bi(z) polynomials in i-k;ariables z. We

note that since p is not an analytic function of z neither the maximum modulus
principle for functions of several complex variables (9] nor lemma 2.2.3.11 of

the present paper applies to p. However, the following result is true.

Lemma 2.5.2: Let P-P(z) be as defined above. If ai-ai(z) for each i-l,2...N are
widest sense Schur polynomials and pl for z-1, whenever ai#O for each

i-1,2...N, then Ij_<l for Iz<l. Furthermore, if p-I for some z in Iz-im then

p<l for jzl<l unless each pi is constant.

Proof: Let p(z0)_l with Jj01<1. Consider the rational functions ri(z)-Cii(z),
i-l,2... N where each Ci  is a constant such that ICil-1, and ri(z0) is a

positive real number i.eq, 1Pi(z0)i-jri(z0)-Yiz) Also, conrider the

rAtional function R(z)- E ri(z). Obviously, then IR(z)I E Iri(z) I
Elpi(z)l-p(z) for all z. IA7 articular, tR(z)jp(z)<l for Iz_mi, whknver aj#0

ior each i-l,2...N. Thus, by invoking lemma 2.Z.3.11 with R(z) it follows that

either IR(z)l<l for lzl<l or R(z) is a constant. The first of the last two

situatiRns is, N however, in contradiction with the fact that

R( )- Z r i( O)- 1pi(O)I-P(.O)_l. On the other hand, if R(z) is a contant

then iE follow= 1that l<Ip(jo)j-IR(zo)=tR(z)_<p(z) for all z. However, since

Ip(z); l for IzI-1 whenever ai#O for each i, the last stated chain of weak

inequalities, in fact hold with inequalities replaced by equalities. Thus, we

have that p(z)-l for all z. Furthermore, a comparison of the equality
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N N N
! Iri(z)I- Z pilzI -lp(z)-IjR(z)I with Z r (z)-R(z) clearly shows that ri(z)

each M-i,2... N is a real positivAu;iber for all z. It then follows by

invoking a standard result from the theory of function of several complex
variables that ri(z), for each i, is a constant i.e., independent of z.

The following result can be viewed as a multiport extension of the maximum

modulus theorem for function of several compex variables useful in the present

context of passive or lossless networks.

Theorem, 2.5.3: Let H be an (NxN) rational matrix holomorphic in Iz1<l and
(IN-HH* ) is nonnegative definite for IzI-l, wherever H is well defined. Then H
is a discrete bounded matrix.

Proof: Let x-(xl,x2 ,...xk) be any (lxN) constant vector and Y-(ylY2,...yk) be

a (ixN) vector defined ,ia y-Hx.NThen it folows fr 2m the nonnegative
definiteness of (IN-HH ) that £ jyi 2 < £ Ixil , whenever H and thus, each

i-1 iml

yi'Yi(Z) is well defined on IzI-l. Clearly, the property of holomorphy in jzI<l

is inherited by each y. from H. Then by invoking lena 2.5.2, it follows that
N 2 N
I lyi Z Ixil for Izl<l. Since x is arbitrary the last conclusion

i-l i-i *t
yields that (I.N-HH ) is nonnegative definite for Izl<, which when combined

t
with the fact that (IN-HH ) is nonnegative definite whenever H is holomorphic

in IzI-l, yields, in view of definition 2.5.1, that H is a discrete bounded

matrix.

Definition 2.5.4: A rational matrix of size (NxN) is said to be discrete k-D

lossless bounded if

(a) the entries Hij - H ij(z) of R - H(z) are holomorphic and

unimodularly bounded i.e., IH ijI < 1 for Izl < 1.
(b) H H - IN '

We note that, as expected, the class of multidimensional discrete lossless

bounded matrices form a subclass of the class of multidimensional discrete

bounded matrices.
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Property 2.5.5: The denominators of each entry of discrete k-D lossless bounded

matrix H, when written in irreducible form, are scattering Schur polynomials.

Proof: Follows from theorem 2.2.3.12(b).

Property 2.5.6: Determinant of H can be expressed in irreducible form as det H

- d(a/&), where a is a scattering Schur polynomial, and d is a unimodular

constant i.e., jdl- 1.

Proof: Let det H - a/h , where a and h are relatively prime polynomials.

Since due to theorem 2.2.3.9, products as well as factors of scattering Schur
polynomials are also scattering Schur, from property 2.5.5 it follows that h is

a scattering Schur polynomial. Now, from definition 2.5.4(b) of lossless

bounded matrices it obviously follows that det H det H - 1 i.e., (a/h)(& /)-

1, thus implying (2.5.1a) below. Since in (2.5.1a), the polynomial h is

relatively prime with a, and h, being scattering Schur, cannot have a factor zi
for any i, the polynomial a must contain h as a factor i.e., (2.5.1b) follows,

where d is a polynomial in z.

% -na
a z - hh z , a- h.d (2.5.1a,b)

Substitutuing (2.5.1b) in (2.5.1a) and considering the discrete paraconjugate
of the resulting equation it follows from Property 2.A5 that ad-h. The latter

equality, in view of scattering Schur property of h and property 2.A6, imply

(2.5.2).

a . d-h (2.5.2)

Substituting for h from (2.5.2) into (2.5.1b), we obtain dd-l, which in turn

imply that d is a constant. Consequently, d-d*, and dd*-idi-l. It then follows

from (2.5.2) that det h- a/h - a/(ad) - d(a/8).

Remark 2.5.7: Although a is scattering Schur a is not necessarily so.

Consider H - z.

Property 2.5.8: A discrete lossless k-D rational matrix H can be written as H

- P/8, where P - P(z) is a polynomial matrix in z, and a is as in property
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2.5.6 above.

Proof: From condition (b) of the definition 2.5.4 and property 2.5.6 it follows

that H - H-1 - d*(Adj H)(S/a), which in turn imply that H - H - d(&/)(AdjH).

Furthermore, it is straightforward to verify that &/a - a/a for any polynomial

a. The last two equlities combined togather yield (2.5.3) in the following.

A.H - d.a.(Adj H) (2.5.3)

Due to property 2.5.5 and theorem 2.2.3.9(b) the entries of Adj H, when
written in irreducible form, have scattering Schur denominators, and therefore,

are holomorphic in IzI<l. Hence in (2.5.3) the right hand side is holomorphic

in 111>1. The left hand side is either a polynomial matrix P-P(z) or the

entries, due to property 2.5.5 and theorem 2.2.3.9(a), have scattering Schur

denominators when written in irreducible form. In the latter case, however,

AH, by virtue of theorem 2.2.3.6, is not holomorphic in 111>l. Thus, aH-P,

where P-P(z) is a polynomial matrix.

multidimensional discrete lossless two-ports (i.e., N-2):

For N-2 by considering the fact that H - H- , (2.5.4) and (2.5.5) below

follows from property 2.5.6.

HI1 -d (A/a)H22 ; H21 -- d (a/a)H12  (2.5.4a,b)

H 2  (a/a)H21 ; H2 2 - d (&/a)H11  (2.5.5a,b)

We note that (2.5.4a) and (2.5.4b) are respectively identical with (2.5.5b) and
(2.5.5a) via the operation '~'. Also, H12 in (2.5.5a) is holomorphic in Iz>l,
whereas H21, due to property 2.5.5, must have scattering Schur denominator, and

therefore, due to theorem 2.2.3.6 has singularities in fzl>l. Hence the

denominator of H2 1 divides A, i.e., H21 - c/a (not necessarily in irreducible

form). ThereforeA from (2.5.5a) it follows that H12 - - d (c/a) i.e., H2 - -

d(e/) - - (a/A)z - . It follows frm (2.5.5b) via a similar afigument that H1 1 -

b/& (not necessarily in irreducible form), and H2 2 - d(b/A)z- a . Thus, H can be

written as in (2.5.6) below.
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Sb -d

H L (2.5.6)

Also, by considering the determinant of (2.5.6), it follows via the use of

property 2.5.6 that

bb + cc - aa (2.5.7)

n ~ n a
Furthermore, since H12 - - dcza/a and H22 - dbz /a are holomorphic in Izl<l,

it is necessary that degic < nai and degib < nai for i- 1 to k.

The following result can be considered to be the discrete multidimensional

counterpart of the Belevitch canonical form for the representation of lossless

two-port networks well known in classical network theory. The multidimensional

continuous version of this result has recently been discussed in [2].

Theorem 2.5.9: A (2x2) rational matrix H - H(z) is a lossless bounded matrix

if and only if there exists polynomials a,b,c and a unimodular complex constant

d such that:

(i) H can be written as (2.5.6)

(ii) & is a scattering Schur polynomial

(iii) a,b,c are related as in (2.5.7)

(iv) degia>degib, and degia>degic for all i-i to k.

Proof: Only the sufficiency part of the theorem needs to be proved, the

neceesity being already established. We need to show that under the conditions

stated in the present theorem, condition (a) and (b) of definition 2.5.4 are

satisfied. Straightforward computation along with (2.5.7) and the identitity Cs

- 3a yields H; - 12, which verifies condition (a) of definition 2.5.4.

Furthermore, a second use of the identity S - Sa along with (2.5.7) yields

(2.5.8) below.

(b/&)(B/i) + (c/&)(,/A) 1 1, (b/A)(BS/A) + (c/&)(a/A) - 1 (2.5.8a,b)
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It clearly follows from (2.5.8b) that Ib/2 + Ic/al 2 - 1, and thus lb/l<l,

I c/a . for '_z-1 whenever A # 0. However, since A is scattering Schur, both
(b/a)z-a and (a/a)z-a are holomorphic in

IzI < 1, and t is an application of lemma 2.2.3.11 yields that IH121_1 and

lH22 1_l for IzI < 1. Similar arguments with (2.5.8a) yield IH11l _ and lH21 _<l,

thus completing the proof of the present theorem.

Definition 2.5.10: An (NxN) rational matrix Z - Z(z) is said to be discrete

positive if each entry Z ij(z) is holomorphic in lz<l , and

Z(z) + Z* t(z) is nonnegative definite for Iz1<l.

Lemma 2.5.11: Let Z-Z(z) be a discrete positive matrix in k-variables. If Z(z)

is regular at E. with IzE01<1 then Z(z0)+(Z(z0)) is nonnegative definite.

Proof: If IE01<l then the result is obvious in view of definition 2.5.10. If

I.01<l but I.E1 then consider the neighbourhood N1- z:llz-zIc of.Eo such
that Z(z) is holomorphic in NV. The existence of such a N follows from

property 2.A5 in the appendix. Thus, in particular, each element of the

matrices Z(z) and Z (z) are continuous functions of z in the conntcted set

N-N n{z:.zl<lj. Consequently, for any constant vectoE x, x(Z+Z* )xt is a

continuous function of z in N. Furthermore, x(Z+Z )x t>0 for zcNtdue to
*- t

definition 2.510. It then follows by invoking the continuity of x(Z+Z )x in*- t
N that x(Z+Z )x > 0 for z-0 and for arbitrary x.

The following result is a generalization of theorem 2.3.5 to multiports.

Property 2.5.12: Let Z(z)-(Z ij(z)] be a discrete positive matrix. Then the

denominators of each entry Z ij(z), when expressed in irreducible form, are

immittance Schur polynomials.

Proof: The fact that the denominators of each entry of Z ij(z) is widest sense

Schur obviously follows from definition 2.5.10. Let Z'(z 1 ) - Z(zlZ6), where E6

is such that 1z' 0 1-1 and let a-a(z) be the l.c.m of the denominator polynomials

1 k 211. denotes the Eucledean norm i.e., 1z- £ zi.l
i-i
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of the elements of the matrix Z(z). Let v be the multiplicity of a

selfparaconjugate factor c in the denominator of Z ij(z) in irreducible form.

Then due to property 2.A4, c'-c'(z1)-c(Z1,1) will be a factor of multiplicity

v in the denominator of . ( 1 )=Z .(Wz, ) in irreducible form for any choice

of z' 0  on Iz' 1-1 from a sequentially almost complete set Q of (k-1) tuples of

order (k-i). we note the polynomial a'-a'(zl)=a(z11z'O ) cannot be identically

zero for all Ro in Q, beacuse otherwise a would be identically zero due to

property 2.A2 in the appendix. Consequently, there exists E0 c Q with IJ0I-l

such that ZT(zY) ist well defined. By invoking lenma 2.5.11 it then follows

that Z'(zp)+(Z'(zl)) is a discrete positive matrix function in the variable

zI only. Since c' is a selfparaconjugate factor in the denominator of Z'. it11

immediately follows from known one-variable results that v - 1.

Corollary 2.5.13: If Z-Z(z) is a discrete positive matrix then the :,ast

coumon denominator of all entries Z ij(z) of Z(z) is an inmittance Schur

polynomial i.e., there exists an inmittance Schur polynomial a such that aZ -

polynomial matrix.

Proof: Follows from the fact that l.c.m. of a set of immittance Schur

polynomials is also an inmittance Schur polynomial (theorem 2.4.9c).
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2.6. RELATGISHIP BETWE MLTIDIMEIICNIAW SoiM POLNMWIALS AND

PILLTIDIMEICNWL HUIMITZ POLY1"UA:

Let g(p) and a(z) be polynomials in the variables p and z respectively. Also

let the polynomial a(z) be obtained from g(p) via the bilinear transformations

Pi - (l-zi)/(l+zi) for i-I to k as:

1-z1 1-z2  l-zk k M.
a(z) g' (l+z (2.6.1)

where, mi - degig for i - 1 to k.

Then the polynomial a - a(z) has been called [7] the associate of the

polynomial g - gi). On the otherhand if a and g are related as in (2.6.2)

below then g is called (7] the associate of a.

• -P lP2 l-k ' k n.
g(P) - a 2 klpi) 1 (2.6.2)

S i-li

where degia - ni for i - 1 to k.

General properties of associates of polynomials in z and in p variables and

their interrelations are discussed extensively in (7J. We only note here that

two polynomials may not be associakes of each

other. Consider, for exmple, a - H (l+zi ) and g- 2k

In this context it has been shown in [7] that any scattering Schur polynomial

is the associate of a scattering Hurwitz polynomial. Conversely, any

scattering Hurwitz polynomial devoid of factors (l+pi) for any i - 1 to k, is

also associate of some scattering Schur polynomial. Stated alternatively, the

bileaner transformation along with its inverse transformation sets up a

one-to-one correspondence between the scattering Schur polynomials and

scattering Hurwitz polynomials devoid of factors of the type (l+pi). The

scattering Hurwitz polynomials containing factors of the type (l+pi), when

bilinearly transformed via pi - (l-zi)/(l+zi) also yield scattering Schur

polynomials. This is in contrast to the situation discussed in (4], where it

is shown that the associates of strict sense Hurwitz polynomials need not be

strict sense Ichur. In what follows answers to questions such these are sought

in the context of other classes of multidimensional polynomials.
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We first note that the associate of a discrete selfparaconjugate polynomial is

necessarily selfparaconjugate i.e. if a - ya then g, - Yg, but the converse is

not true i.e., the associate of selfparaconjugate polynomial is not necessarily

discrete sflfpaaconjugate. However, it is true that if g, - yg then

a - y.a zi  , where ri - degig - degia - multiplicity of the factor (l+pi)
in g. Hkver, if g is selfparaconjugate Schur then its irreducible factors

must also be so, and therefore, g cannot have a factor (l+Pi). Thus, if g is

selfparaconjugate then its associate a is also discrete selfparaconjugate.

Furthermore, the associate of a widest sense Hurwitz polynomial is widest sense

Schur, and conversely the associate of a widest sense Schur polynomial is

widest sense Hurwitz [7). It, therefore, follows that there is a one-to-one

correspondence under the bilinear transformation and its inverse between the

selfparaconjugate Schur polynomials devoid of factors of the type (l+zi)and the

selfparaconjugate Hurwitz polynomials. Furthermore, selfparaconjugate Schur

polynomials containing factor of the type (l+zi), under the action of the

transformation pi - (l-zi)/(l+zi) i-I to k necessarily yield selfparaconjugate

Hurwitz polynomials. Since it is known [7, lemma 9] that if two polynomials

are relatively prime their associates are also relatively prime the above

comments also apply, in particular, to reactance Hurwitz polynomials.

Furthermore, since the immittance Hurwitz (Schur) polynomials are products of

reactance Hurwitz (Schur) polynomials and scattering Hurwitz (Schur)

polynomials the following conclusions follow. The whole class of immittance

Schur polynomials devoid of factors of the type (l+z i ) can be identified as the

class of associates of the whole class of inuittance Hurwitz polynomials. on

the other hand, the whole class of immittance Hurwitz polynomials devoid of

factors (1+Pi) for i - 1 to k can be identified as the class of associates of

the class of immittance Schur polynomials. Furthermore, if a is any immittance

Schur polynomial not containing (l+zi) for any i - 1 to k, as a factor then
there exists an immittance Hurwitz polynomial g without the factor (1+pi) such

that a and g are associates of each other. Conversely, for any immittance

Hurwitz polynomial g devoid of the factor (l+Pi) for all i - 1 to k there

exists an immittance Schur polynomial a such that g and a are associates of

each other. Thus, there is a one-to-one correspondence between the members of

the class of immittance Schur polynomials devoid of factors of the type (l+z i )

for i - 1 to k and the members of the class of immittance Hurwitz polynomials

devoid of factors of the type (l+pi) for i - 1 to k.
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The above discussion can be suumarized in the form of theorem 2.6.1 for the

purpose of which the following concise notation is adopted. The set of

scattering Hurwitz (Schur), selfparaconjugate Hurwitz (Schur), reactance

Hurwitz (Schur) and imuittance Hurwitz (Schur) polynomials are denoted

respectively by SH (SS), PH (PS), RH (RS) and Il (IS). Also, the subclass of a

certain class of polynomials devoid of factors of the type (l+Pi) or (l+z i ) for
all i, is to be denoted by adding the subscript l4p or l+z, as the case may be,

to the symbol designating the corresponding class of polynomials. For example,

the class of scattering Hurwitz polynomials devoid of factors of the type 1+pi,

for all i will be denoted by SHI+ p, whereas the class of selfparaconjugate

Schur polynomials deviod of factors of the type is to be denoted by PS +z*

Furthermore, the notation A(C) will denote the the set of polynomials obtained

by considering the associates of all polynomials belonging to a class C.

Theorem 2.6.1: The following set inclusion relations hold true.

(i) A(SHI+p) - A(SH) - SSl+z - SS- A(SS) - SHI+p c SH. The elements of SRI+ p

and those of SSI+ z are in 1-1 correspondence.

(ii) A(PH) - PSl+z C PS; A(PS1+z ) - A(PS) - PH - PHI+p . The elements of PH,+ p

and PS1~z are in 1-1 correspondence.

(iii) A(RM) - RSl+z c RS; A(RS1 +z) - A(RS) - IM - RHI+p . The elements of RHI+ p

and RSI+z are in 1-1 correspondence.

(iv) A(IHB+ p ) - A(IH) - ISl+z a IS; A(IS1+z ) - A(IS) - IHI+p c l.
The elements of I3l+ p and those of IS1+z are in 1-1 correspondence.
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2.7. SED39M:

Properties of widest sense Schur, selfparaconjugate Schur and scattering Schur

polynomials previously not published in the literature are discussed.

Elementary properties of discrete multidimensional positive functions are then

studied. The reactance Schur and the imittance Schur polynomials occurring

respectively as the numerators and denominators of discrete reactance functions

and discrete positive functions are introduced for the first time. Various

alternate characterizations of these polynomials are then suggested. The

heirarchial ralationship between these different classes of Schur polynomials

can be summarized diagramatically as is done, for example, in the case of the

corresponding classes of Hurwitz polynomials in [2]. The role of these

polynomials in scattering or imnuttance descriptions of discrete (k-D) passive

multiports are investigated. In particular, a discrete (k-D) counterpart of

Belevitch canonical form well known in classical network theory having

potential applications in passive multidimensional digital filter design is

derived. Relationship between the classes of multidimensional Schur polynomilas

and the corresponding classes of multidimensional Hurwitz polynomials are also

discussed within the present context, and are shown diagrammatically in fig

2.1.
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APPEDIE

2.A. The proofs of the results stated below are ommitted for brevity [2).

Definition 2.Al: Let P be a set of k-tuples, z - (ZlZ2,...zk), where all z

belong to a same number field 2 (e.g.,either the field of real numbers or the

field of complex numbers). We designate by gi' i - 1 to k, subsets of 2 and we

say that 2i is almost complete if it comprises almost all elements of 2 ( i.e.,

all elements except at most finitely many). We then say that P is a

sequentially almost complete set of order m > 1, with m < k, if there exists a

permutation il,i2 ,...ik of the integers 1,2,...k such that all z c P can be

generated in the following way. There exists an almost complete 2i such that

any zi  2i may be chosen. For any choice thus made, assuming m > 2, there

there eists anlalmost complete 2. (possibly depending on the particular zi  c

2. selected) such that any z. 2Q. may be chosen. Again for any choice t us

make, assuming m > 3, there exists ;A almost complete 2. ( possibly depending

on the particular z. and z. selected) such that any z. £ 2. may be chosen

etc. If w - k this rocess is continued until we have ached p i  < k,

once we have reached i there exists at least one (k-m) tuple (zk  ,z...zi
(possibly depending on the particular zi to z. selected) that may"' choseh.

Finally, we may extend the above definition t' the situation m - 0 by saying

that in this case P is not empty.

The set P is said to be sequentially infinite if in the above definition the

term almost complete is replaced by infinite.

Theorem 2.A2: If a is a polynomial in k-variables such that the set of zeros of

a comprises a sequentially infinite set of order k then a is identically equal

to zero.

Theorem 2.A3: If and b are polynomials in k-variables then a and b have a

proper common factor if and only if the set of common zeros that are common to

a and b is a sequentially infinite set of order (k-i).

Theorem 2.A4: Let a nd b be two relatively prime polynomials. For any m such

that 1<m<k let us freeze m of the variables zi, say for i1 to iM at
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corresponding values Zio. Let a1 and b1 be the resulting poynomials in the

remaining variables. Then there exists a sequentially almost complete set 9m of

m-tuples of order m such thatfor (z. ,zi  ,...z i  )cQm , the polynomial a1 and

b are still relatively prime. Furthe ore, 0 any orriijg my be chosen for

Theorem 2.A5: If a(z) is a polynomial and a(z0)#O for some E0 then there exists

>O such that a(z)#O for all z in the neighbourhood Hjz-z01j<c, where 11.11
denotes the Euclidean norm.

2.B. Various properties of the operations '' and 1", as defined in the

introductory section of the present paper, are derived in this section.

Property 2.Bl: If a - b.c then a-bc and a - b.c, where b and c are

polynomials.

Property 2.B2: If a is any polynomial then a cannot contain the factor zi for

any i.

Property 2.B3: If the polynomial contains the factor zi with exact multiplicity

Pi then (degia-degia) - pi.

Property 2.B4: If the polynomial a does not have zi for any i as a factor, and

b - a then b - a.

Property 2.B5: If a is a widest sense Schur polynomial, and b - a then b - a.

Property 2.B6: If the polynomial d is the greatest common factor between the
polynomial a and its discrete paraconjugate a then d is a discrete

selfparaconjugate polynomial.

Property 2.B7: Let a'-a'(z') be the polynomial obtained from by freezing in the

polynomial a-a(z) kone of the variables, say z1 , at z1-z10 on jz11-l. Thenn 1' -r k Pi .. ...
(a) z 0 - Z10 a' 8 zi , where Pi-degia - degia'>0 for all i#O.

Property 2.B8: Let a be a discrete selfparaconjugate polynomial with a-ya

involving the variable z If a is expressed as in (2.1.1) then for
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iv-O,l,....ni, (2.Al) holds true.

- nr

yaV - (ani_ )fzr , where the product extends over all r~i (2.Al)

PropIerty 2.B9: If a is a polynomial and degi(a+a) < degia for some i, then

(a+a) must contain the factor zi.

Property 2.BlO: If the polynomials a and b are such that b - a+a is widest

sense Schur then b - +b, i.e., b is either paraeven or paraodd respectively.

2.C. The polynomial az associated with a is obtained from a via a formal

algebraic operation as defined in section 2.1. It turns out that this operation

plays the corresponding role of considering the derivative of a polynomial in

the context of continuous systems. Related properties of az are studied in the

following.

Property 2.Cl: If f - gh, where g and h are polynomials in z with their

coefficients as polynomials over the field of complex numbers then

fz M hgz + gh2 "

Property 2.C2: If f contains a factor g of multiplicity n (n>l) then fz

contains the factor g with exact multiplicity (n-l).

Property 2.C3: If the coefficients of the polynomial f belong to the field of

complex numbers and f*O for lzI<l, then Re(fz/f)>O for Jzj<l.
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CC"HNR 3

01 A G( EALIZU) FATOIZATION PROBLEM FUR THE SYMSBESIS

OF UM PLANE TYPE MJLTIDPIN INAL DIGITAL FILTERS

3.1.11RC=IN:

Various synthesis schemes such as the Darlington synthesis scheme for

synthesizing lossless transfer functions as a cascade interconnection of

elementary lossless building blocks such as inductors, capacitors, gyrators

etc. in the continuous domain are well known in classical network theory. The

corresponding problem in the discrete domain, namely that of synthesizing a

discrete lossless bounded (or positive) transfer function as a structurally

passive interconnection of elementary lossless building blocks was first

resolved via transformation from prototype problems in the continuous domain,

and the resulting class of filter structures are now known as the wave digital

filters (11, [17]. Recently, however, successful attempts to derive these and

similar other discrete domain results without making explicit use of tools of

classical network theory have been made. Notable among these are the orthogonal

filters [2],[4],[14],1151 and the class of filters referred to as the lossless

bounded real (LBR) filters described in [3], (13] and in related other

publications.

In view of interest in the synthesis of multidimensional (k-D) wave digital

filters, the problem of synthesis of k-D lossless two-port scattering transfer

matrix via the bisection of a prescribed two-port into a cascade connection of

two lossless two-port sections of smaller "degree" has been addressed in the

continuous domain in [5). Factorability of continuous domain two-port

scattering matrices has also been studied recently 1i] in the multidimensional

context. An attempt to develop a complete and self consistent theory for the

synthesis of k-D structurally passive quarter-plane causal type digital filters

independent of the continuous domain methods have already been initiated in

[81, [9] and [10] by discussing the discrete domain stability properties of a

class of multidimensional polynomials. In the present paper the problem of

synthesizing a k-D discrete quarter-plane causal type lossless two-port as a

structurally passive interconnection of more elementary digital building blocks

directly in the discrete domain is approached by the methods of factoring the

chain matrix, the hybrid matrix and the transfer function matrix associated

with a lossless two-port. By following recent results in [9] it can be shown

that each of these matrices can be uniquely expressed by means of a set of
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three polynomials in a form analogous to the Belevitch canonical form [161 of

classical circuit theory. For the purpose of unified presentation of results, a

matrix referred to as the (multidimensional) generalized lossless two-port

matrix, which can be viewed as a generalization of the multidimensional chain

matrix, the hybrid matrix and the transfer function matrix has been introduced.

Interestingly, in 1-D this matrix can be categorized under the class of sigma

lossless rational matrices considered, for example, in [12). The problem of

factorizing this generalized lossless two-port matrix into the product of two

matrices of identical type can then be viewed as a problem of structurally

passive synthesis of multidimensional two-ports. It must be noted that

factorization of chain matrix, when feasible, yield networks having cascade

structures as shown in Figure 3.1, whereas the factorization of hybrid matrix
and transfer function matrix, when feasible, yield networks having the

topological structure as shown in Figures 3.2 and 3.3.

Necessary and sufficient conditions for this generalized factorization problem

so introduced to be solvable are obtained in the present paper via constructive

techniques. As expected from our previous study of analogous problems in the

continuous case 151,[11 it turns out that the factorization may ,ot be

feasible in a generic multidimensional (k>2) situation. However, the

impossibility of factorization of the chain matrix does not by any means rule

out the feasibilty of factorization of the transfer function matrix. Exactly

same comment also applies if the role of three types of matrices (i.e., chain,

hybrid and transfer function) are permuted in any posssible manner (cf. Section

7). Furthermore, in order for the factorizations under consideration to yield

computable digital filters the structures resulting from the factorization may

not have any delay free loop. Apparently, this imposes a further constraint on

the factorization not present in the corresponding continuous domain problems

discussed in (51 and [11). However, as shown in Section 3.5,-this constrained
problem can always be solved if and only if a solution to the unconstrained

problem exists.

In the special case of 1-D, the criterion for factorability is always seen to

be satisfied, thus guaranteeing the feasibility of factorization. Additionally,

the factorization is seen to be nonunique. Our algorithm for computing these

factors, however, enjoys two remarkable properties. First, it encompasses the
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entire family of possible solutions. From this point of view it may be remarked

that although synthesis in cascade type structures has previously been

considered, for example, in [2],[14],115] and [3], [13] our method, namely that

of factoring the corresponding chain matrix, is somewhat more general. A second

important property is that the factors can be computed essentially by solving a

highly structured set of linear simultaneous equations, and thus can be

potentially computed in a fast manner. On the other hand, although similar

topological structures have been mentioned in (11 in the context of wave

digital filters obtainable from analog prototypes, we are unaware of any

previous work on discrete domain schemes for internally passive synthesis,

which yield structures as a result of repeatative application of the

decomposition indicated in Figures 3.2 and 3.3. Our discussion, even in the 1-D

context, thus, yields a set of new algorithms for structurally passive

synthesis of 1-D lossless digital filters previously not discussed in the

literature.

Most multidimensional filtering tasks require the filter to have certain

symmetries in their frequency response characteristics 171. However, this
demands that the two-port be either a symmetric or a (quasi) antimetric

two-port. Motivated by potential applications of the results developed in the

present paper to the design of multidimensional structurally passive digital

filters, special attention to the synthesis of symmetric and (quasi)

antimetric lossless two-ports have also been paid.

In section 3.2 a precise formulation of the problem along with some notation

and terminology are introduced. In section 3.3 it is shown that the

factorization problem so introduced is essentially algebraic in nature. An

elementary step towards the general factorization problem is also taken here.

In section 3.4 Some properties of the fundamental equation which, in fact, is a

linear version of the algebraic problem and is central to our study, are

examined. Necessary and sufficient conditions for factorability and an

algorithm for obtaining the factors, when they exist, are obatained in section

3.5. Section 3.6 discusses how the results so obtained yield new as well as

known internally passive 1-D digital filter structures. In section 3.7 remarks

are made on computational considerations of the algorithm for synthesis,

examples are worked out to demonstrate the need for factorability of three
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different kinds of matrices associated with discrete lossless two-ports, and

the special cases of symmetric and (quasi) antimetric discrete two-ports are

dealt with. Finally, conclusions are drawn in section 3.8.
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3.2. w)ATICKS, EJ fLGY AND PROBLEM FORVATICxN:

English capital letters are used to deaote polynomials and rational functions

in k-variablgs:rz - (z&' z2,.. Zk). The notation z- is used to denote the

monomial (z" z2 . ... zk) n being the k-tuple of nonnegative intergers (nl,
*-I *-i *-l

n2 ,...g nk). Also, A - A*(z 1j, z2 , zk  ) where * denotes complex

conjugation. The notation degiA will be taken to mean the partial degree of the

polynomial A in the variable z1. Occassionally we shall also use the notation A

to denote Az! with n-(nl~n2 ,...nk)), where ni-degiA. Similarly for B and C etc.

The notation z 1 denotes Izij < 1 for i'l to k. Similar notations with <

replaced by <, >, >, - etc. are also used.

The transfer function matrix Z associated with a k-D lossless two-port can be
represented [9] as in (3.2.1). Note that (3.2.1) is slightly different although

an equivalent version of the corresponding representation in (9]. Consequently,

the chain matrix 9 and the hybrid matrix r can also be represented as in
(3.2.2) and (3.2.3) respectively. Also, note that a given Z can be uniquely
represented as in (3.2.1) by requiring that A(O)-l. The representations

(3.2.1), (3.2.2) and (3.2.3) can be regarded as canonic in this sense.

'A Bz-1 A -yCz-
- l.(l/C) - n -(l/)n

Ic -yBZE B yAzc! C _

(3.2.1, 2.2, 2.3)

where (i) A is a scattering Schur polynomial (91 (3.2.4a)

(ii) Y is a unimodular constant, i.e., yjy - 1 (3.2.4b)

(iii) AA - BB + CC (3.2.4c)

(iv) degi B < ni, deg i C < ni for all i-l to k (3.2.4d)

Note that as a consequence of (3.2.4c) and (3.2.4d) we also have:

(v) degi A < ni for all i-l to k. (3.2.4e)

For the purpose of a unified presentation of the discussions that will follow,
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matrices 9, r and E associated with a lossless two-port will be viewed as a

matrix 9 associated with the lossless two-port as expressed in (3.2.5) while

properties (P1) through (P4) hold true.

0 - (I/W) (3.2.5)

,Y pXz-n

Property 1 (P1): X, Y and W are polynomials; a = constant, ola-l, Ipl=+l.

Property 2 (P2): XX - pYY - WW.

Property 3 (P3): deg i W < ni , deg i X < ni and degi Y < ni for all i-i to k.

Property 4 (P4): X is scattering Schur when p - 1,

whereas W is scattering Schur when P - -1.

A (2 X 2) matrix such as the one in (3.2.5) will be said to be a generalized

lossless two-port matrix if the above properties (P1) through (P4) hold true.

Since it can be shown that 9 satisfy diag(l, -p) - .[diag(l, -p)].f and*

diag(l, -p) - 4.Idiag(l, -p)].$ > 0 (i.e.,non-negative definite) in IzI<l,

where * denotes the Hermitian transpose, the one-dimensional counterpart of 4

thus, falls into the class of sigma-lossless transfer functions studied in

[12). Since factorability of the 4-matrices form the major topic discussed in

the present paper, ouL results can also be viewed as a multidimensional

generalization of the factorability of 1-D sigma-lossless transfer function

elucidated in (12].

We note the following identification of the parameters of the matrix # in terms

of the parameters of the chain matrix e, the hybrid matrix F or the transfer

function matrix Z.

(i) If 4 - e then W - C, X - A, Y - B, a = y, p - 1

(ii) If # - F then W - B, X - A, Y - C, a = -y, p = 1

(iii) If 4 - Z then W - A, X - B, Y - C, a - y, p - -1

An Advantage of the above formulation is that the problem of factoring the

chain matrix, or the hybrid matrix or the transfer function matrix into a

product of two non-trivial matrices of identical kind can be conveniently
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formulated in a unified fashion as a single problem of factoring the

generalized lossless two-port matrix 0 as 9 - #'W", where 9' and " are valid

generalized lossless two-port matrices represented as in (3.2.6a) and (3.2.6b)

with conditions analogous to (P1) through (P4) satisfied for ' as well as ".

4' - (/W{- (1W" (3.2.6a, b)

Consider first two generalized lossless two-port matrices ', #" expressible

respectively in terms of X', Y', W', a' and X", Y", W" , a" which satisfy

properties analogous to those satisfied by X, Y, W, a in f as in (Pl) to (P4).

Specifically, one obtains:

(i) X', Y', W' and X", Y% W" are polynomials;

a' and a" are unimodular constants. (3.2.7)

(ii) X'X' - PY'Y' - W'W', X"X" - pY"Y" - W"W" (3.2.8a, b)

(iii) deg i W'< n<1, degi W" < n! for all i-l to k and (3.2.9a)

deg i Y' < nf, degi X' < n, deg i Y" < n., degi X" < n"7

for all i-i to k (3.2.9b)

(iv) X' and X" are scattering Schur when P-i,

whereas W' and W" are scattering Schur when p--l. (3.2.10)

Then the following fact holds true.

Fact 3.2.1: If 9' and " are generalized lossless two-port matrices then 9 -

6'" is also a generalized lossless two-port matrix.

Proof: Given ' and " define X, Y, W and a and n-(nl~n2,...nk) as follows.

W - W'W" (3.2.11)

X - X'X" + a'Y'Y"zn ', Y - Y'X" + Pa'X'Y"zn '  (3.2.12a, b)

a - pa'a" (3.2.13)

n. - n! + n7 for each i-i to k (3.2.14)
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It then follows from i-#'*" in a straightforward manner that * can be expressed
in terms of X, Y, W and a as in (3.2.S). Clearly, (3.2,12), (3.2.7) and

(3.2.9b) show that 4 satisfy (P1) and straightforward algebraic manipulations

involving (3.2.12), (3.2.8), (3.2.11) and p - +1 show that 4 satisfy (P2).

Considering the degree restriction imposed by (3.2.9) and (3.2.14) on (3.2.11)
and (3.2.12) likewise shows that (P3) is satisfied. Note that when p - -1 i.e.,

W' and W" are scattering Schur polynomials then W - W'W" is clearly scattering

Schur [9], and (P4) is thus obviously satisfied. This completes the proof that

when p--l, #-*'" as expressed in (3.2.5) via (3.2.11) through (3.2.14) is

indeed a generalized lossless two-port matrix. On the other hand, when p - 1

i.e., X' and V are scattering Schur, X as in (3.2.12a) need not necessarily be

scattering Schur, but can be shown to be imittance Schur [91.

However, to prove that 4 is a generalized lossless two-port matrix we consider

the rational function F - X/(X'X"). In view of (3.2.12a) we also have:

F - X/(X'X") - 1 + 0'(Y'/X')(Y"/X")zn (3.2.15)

It follows from (3.2.8) with p-i that on IzI - 1 we have IY'/X'I < 1, whenever

X' # 0 and IY"/X"I < 1, whenever X" # 0. Thus, Re F > 0 for zI - 1, whenever

X's 0 and X" * 0. Next, since X' and X" are scattering Schur, by invoking Leuma

3b in [9], it follows that Re F > 0 for IzI < 1 i.e., F is a discrete positive
function. Consequently, the numerator polynomial of F, in irreducible rational

form, is a izmittance Schur polynomial [9). Note that any possible factor

common to X'X" and X must be scattering Schur, because X1 and X" are so. Thus,

X is immittance Schur and can, therefore, be expressed as the product of a

scattering Schur factor X1 and a reactance schur factor D [9]. Let D1 be any

irreducible (thus, reactance schur [9]) factor of D and note that there exists

a sequentially almost complete set 2 of order (k-i) of unimodular complex
numbers (9] such that D - X - 0 for any 10 c 2. Consequently, in view of (P2)

we conclude that Y - W - 0 for all i0 c Q. Since Dl, X, Y, W have a

sequentially almost complete (and thus sequentially infinite [9]) set of common

zeros of order (k-i) and D is assumed irreducible, D must be a factor of X, Y

and W (6]. Since D1 is any irreducible factor of D, we then have that X - X1D,
Y - Y1D, W - W1D, where X1, Y1' W1 are polynomials. Since D is reactance Schur

D - oDD for some unimodular constant aD. Clearly, then Xz-n - (DaD)(Xiz!I!) and
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Yz!! - (DD)(Yl z), where mm 2 ...mk) with mi-n i - degiD for all i-i to k.

Thus, after cancelling the common factor D from the numerator and denominator

of each entry of (3.2.5), 4 can be written as in (3.2.16), where a1 - OD -

4 - ('/WI )  (3.2.16)Y1 Po 1XlZ-m!

Since X1 is scattering Schur, Property (P4) is satisfied by the representation

(3.2.16) for f. It can be further shown via trivial algebraic manipulations

that XI, YIp Wit aI in (3.2.16) satisfy properties corresponding to (Pl) to

(P3) because X, Y, W, o has been shown to satisfy the same properties.

Note that in the case p-1 if D is a nonconstant polynomial involving, say, zi,

then the two-port associated with # is degenerate in the sense that in (3.2.16)

m. < n.-n! + n!. The main problem addressed in the present paper, however, is
1 1 1 1

the converse problem of finding a non-degenerate factorization 4 - 1'4" of a
prescribed generalized lossless two-port matrix # into two factors of its own

kind. More specifically, we have the following problem.

MAIN PROBLEM: Given a generalized lossless two-port matrix 4 as in (3.2.5), two
constants a', a" such that l'l - la"l - 1 and a - o'", and the polynomial

factorization W - W'W" along with two k-tuples of nonnegative intergers n'=(ni,

n,....ni) and n"-(n", nj,...n) such that deg i W' < n!, degi W" < n and ni -

n! + n! for all i-i to k, we seek a factorization 4 - 41#", or equivalently,
1 1

find polynomials X', Y', X" and Y" such that (3.2.12) along with (3.2.8) and
(3.2.9) hold. Furthermore, if P-1 (or p--i) then we require X' and X" (or W'

and W") to be scattering Schur.

It proves to be convenient to introduce the following two definitions:

Definition 3.2.1: The pair of polynomial two-tuples {X', Y') and {X", Y"} is

said to be a solution to the algebraic equation if (3.2.12) along with (3.2.8)

and (3.2.9b) are satisfied.
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Note that the restrictions that the polynomials X' and X" or W' and W" be

scattering Schur polynomials are not imposed at all in the above definition.

Definition 3.2.2: A polynomial triple {X', Y', Y") is said to satisfy the

fundamental equation if (3.2.17) along with (3.2.18) holds true.

YX' - XY' - pa'Y"W'W'zEl (3.2.17)

deg i X' < n, degi Y' < n!, degi Y" < n" for all i-l to k (3.2.18a,b,c)

Note that (3.2.17) is obtained by adding the product of Y' and (3.2.12a) to the

product of (3.2.12b) and (-X') and subsequently by using (3.2.8a). Obviously,

then any solution of the algebraic equation also satisfies the fundamental

equation. However, the converse statement is false, consider e.g., X' a 0, Y' a

0, Y" n 0. Note further that the algebraic equations (3.2.12) along with

(3.2.8) and (3.2.9b) constitute a highly constrained nonlinear problem. It is

shown in Section 3.4 that due to the inherent structures underlying the problem

under consideration, solutions to this nonlinear equations can be obtained from

a certain subclass of solutions to the fundamental equation, which, in

contrast, is clearly linear. Thus, solutions to the algebraic equation can be

conveniently characterized in terms of the solutions of the fundamental

equation.
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3.3. SO U 'IN TO 'HE AEZ MIC E.rMON:

Clearly, any solution to the problem of factorization of 4 - *'$" is also a

solution to the algebraic equation. The converse statement is obvious if 0 is

such that p--i i.e., W is scattering Schur. The validity of the converse

statement when p-1 i.e., when X associated with 4 is scattering Schur is

nontrivial but can be proved as follows in Theorem 3.3.1. Thus, the problem of

factoring # reduces to that of solving a purely algebraic problem namely that

of finding a solution to the algebaic equations.

Theorem 3.3.1: Let the pair of polynomial two tuples (X', Y') and (X", Y")

constitute a solution to the algebraic equation. If p - 1 (or p - -1) then the

polynomials X' and X" (correspondingly, W' and W") are scattering Schur. Thus,

any solution to the algebraic equations is a solution to the problem of

factoring 9 - #'0".

Proof: The case when p - -i trivially follows from scattering Schur property

of W - W'W". When P - 1 i.e., X is scattering Schur, consider the rational

function defined as:

F - (X'X")/'X (3.3.1)

Furthermore, by adding the product of (3.2.12a) and (X') to the product of
(3.2.12b) and (-pY') and subsequently by using (3.2.8a), one obtains

X" - (XX' - pYY')/(W'W'). Substituting the last expression in (3.3.1)

straightforward manipulation yields the following:

F - (X'X',/W'W')[l - (pYY'/XX')] (3.3.2)

It follows respectively that from (P2) and (3.2.8a) that on 1z1-i we have IY/XI

< 1, whenever X * 0 and IY'/X' < 1, whenever X' * 0. An examination of (3.3.2)
yields that ReF > 0 for IzI - 1, wherever F is well defined. Thus, from Lena
3b in [91 it follows that F is a discrete positive function. Consequently, the
numerator polynomial of F, in irreducible form, is an immittance Schur

polynomial. Note that any possible factor common to X'X" and X must be

55



scattering Schur, because X is so 19], and thus, X'X" is widest sense Schur

(more specifically, imittance Schur). Next, if for some R0 on the
distinguished boundary jzj - 1, we have X"- 0, then from (3.2.8b) it follows
that Y"- 0, which in turn due to (3.2.l2a) imply that X - 0. Consequently, if
X"- 0 for all Eo e Q, where 2 is sequentially infinite set 161 of order (k-i)

of unimodular complex numbers then X - 0 for all £0 2 Q. However, this is
impossible if X is scattering Schur [91. Therefore, X" cannot have a

sequentially infinite set of zeros of order (k-i) on the distinguished
boundary. The scattering Schur property of X" is thus established in view of
Theorem 9 in [9). Similar arguments hold for X'.

Proposition 3.3.2: Any generalized lossless two-port matrix 4 can be decomposed
as 4 i io 2' where 1, Ior #, 2 are valid generalized lossless two-port

matrices such that #1' #2 are diagonal and the polynomials XXz!- and WWz!
associated with are coprime.

Proof: Let H - gcd(W, X), where W-HW, X=HX I. Since W or X is scattering Schur

H is also so. It then follows from property (P2) of (3.2.5) that H is a factor

of YY. Let H-H'H", where H', H" are factors of Y, Y respectively. Since H"
divides Y, H" divides Y. Due to the scattering Schur property of H" inherited
from H, H" and H" are coprime and thus Y-(H"H")Y1 for some polynomial Y1. A
direct substitution of the last equation along with W-HW1 , X-HX1 in XX -pYY-W*

yields (3.3.3a) in the following.

X1Xl -pYY 1 " WWi, XcXc - PY Yc" WcWc (3.3.3a,b)

Next, let F - gcd(XI , W1 ), where X, -FXc, W1 - FWc and the monomial factors of

of maximal degree in Xc and X1 are identical (note that this uniquely defines

Xc upto a constant multiplier). Clearly, F, being a factor of X1 cannot have a
monomial factor and thus, from (3.3.3a), F must divide Y1Yi. Let F-F'F", where

F' divides Y1 and F" divides Y1. The last requirement implies F" divides Y V If
p-l then F is scattering Schur since W1 is also so. On the other hand, if p-i
since X1 -FX oD then F is scattering Schur, because X-HX 1 is also scattering

Schur. Thus, either both F' and F" or both F' and F" are scattering Schur.

Consequently, F' and F" are coprime, and YI^ (F'F")Yc for some polynomial Y c

Next, if we define matrices #f - Diag(H"F', H"F'), 4r = Diag(H'F", H'F") and c
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as: [OC)1nXc ,  ["c]21-Y~cc [Y12 (c)'w , [#c]22-(Xcz--)/W , where_m-(mlm 2 ,...mk), mi-ni-degi(HF) it follows in a straightforward manner that

#-#r#c#f and each of the matrices so defined is a generalized lossless two-port

matrix with same p. In particular, (3.3.3b) holds true, where mi is at least as

large as degiXc , degiY C , degiWc for each i-i to k.

Clearly, Wc is coprime with Xc. On the otherhand, since it follows from the

definition of Xc that X -FXc, Wc and Xc cannot have a common factor, because

otherwise, due to W1-FWc, W1 and X, would not be coprime. Consequently, XcXc

and WcWc are coprime. If mi-degiW c formall i'-dik then the last conclusion

also implies that the polynomials WWcZ- and XcXz are coprime, the proof of

the present theorem is complete. Otherwise, diagonal lossless two-port matrices

from left and/or right of #c needs to be further extracted to satisfy the

coprimeness requirement.

For this purpose, note that, due to (3.3.3b), any monomial factor of Xc present

in WWzM must also be a factor of Y YczR . Let S-SIS2 be such a factor of

maximal (total) degree, where the monomial S1 divides Yc' and the monomial S2

divides YcZM . Consider polynomials Xc,-Xc/S, Yc,-Yc/Sl, W ,-Wc and the integer
k-tuple _m(m, ,...m) with m! - mi-degiS. Then clearly XcXc, - pYc,Yc, -
WcWc, with degiXc,, degiYc, and degiWc, upper bounded by m! for all i-l to k

holds true. Thus, any monomial factor of Xcrz -  present in Wc Wc,Z - must also

be a factor of Yc'YcZ!- . Let T-T1T2 be such a factor of maximal (total)

degree, where the monomial T1 divides Yc", and the monomial T2 divides Yczm
.

Next, consider Xo-Xc,, Yo-Yc,/T and the integer k-tuple no-(nol, no2,... nok),

where noi- m-degiT. By letting Wo-Wc it is then routinely verified that #c -

Diag(S2 , T ).#o.Diag(SI, T2 ), where # is a generalized lossless two-port

matrix described nby X0  Y0, W0, and aas in (3.2.5) such that OwOw is

coprime with XoX oz. The proof of the theorem is then completed by setting:

#1 - Diag(S2, T1 ).#f and #2 - Diag(S1 , T2 ).#r.
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3.4. PwPERIE oF 7W U E ION.

In this section certain properties of the fundamental equation (3.2.17) crucial

to the development are studied under the assumption that the prescribed

generalized lossless two-port matrix # be such that the polynomials xzn and

Wz n  are relatively prime. As shown in Proposition 3.3.2 no loss of generality

is incurred due to this assumption.

Lemma 3.4.1: If the polynomial triple (X', Y', Y") is a solution to the

fundamental equation then there exist a polynomial X" given by (3.4.1) such

that the polynomial triple {pY'z!' , X'z!!', -pa *X") is also a solution to the

fundamental equation.

x- P/(Xz-) - -Q/(WWlz (3.4.la)

where

P - (xW"W"z- + '.Yz- Y), Q- Y(PY'z-') - X(X'z') (3.4.1b, c)

Proof: One obtainb (3.4.2) by adding the product of tilde of (3.2.17) and pY to

the product of (P2) and X' and subsequently by using (3.2.11), (3.2.14) and

trivial manipulations.

(nQ - -lW-,p (3.4.2)

Due to the upper bounds on the degrees of X', Y', Y" imposed by (3.2.18) and

degi W"< n7, it follows from (3.4.1b, c) that P and Q are polynomials. The fact

that X" in (3.4.1a) is a polynomial then follows from (3.4.2) in view of

relative primeness of _-z with Wqw!!- Since Q- Y(PY'z!!, - X(zx',) -

pO'(-p,' X")W'W'zn ' , the triple (PY'z- , X*!n, -ol X") satisfies the

fundamental equation.

The fact that degi(pY'zn') and degi(X'z-'), for each i-l to k, is upper bounded

by n! is obvious. In order to prove that degiX" < n we first note that it
1 

1
follows from (3.4.1b, c) and the upper bounds on the degrees of X, Y, X', Y',

X" and Y" that for all i-l to k we have:

_1
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degiP < ni+n , degiQ < ni+n (3.4.3a, b)

It is then necessary to distinguish between the following two cases.

(i) If p-i i.e., X is scattering Schur then degi(Xzn) - ni for all i-i to k.

It then follows from the first equality in (3.4.1a) and (3.4.3a) that degix" <
n' for all i-i to k.

(ii) If p--i i.e., W, and thus W', is scattering Schur we consider two sets of
indices II, 12 such that i c I1 if degiW' - n, whereas i c 12 if deg.w, < n!'.

2 11 E121- ,1

If i C I1 then due to scattering Schur property of W' we have deg.(W'W'zn ) -

2n!. The desired result then follows from (3.4.3b) and second equality in

(3.4.1a). On the other hand, if i c 12 then from (3.2.9a), (3.2.11) and

(3.2.14) it follows that Wz-n must have a factor zi, and thus, X does not have a
factor z. because Wz!- and X are assumed to be coprime. Consequently, degiXz-

=ni . The result then follows from (3.4.3a) and first equality in (3.4.1a).

Lemma 3.4.2: If (Xj, Yip Y ) and {Xj, Yj, Y ) are two polynomials triples

satisfying the fundamental equation then the identity (3.4.4) holds and is

equal to a constant.

pa'(Y"X' - 'Y")/X - '- X zn ' )  (3.4.4)1 lX xi2  1 xY

Proof: One obtains an equivalent form of (3.4.4) by adding the product of the

fundamental equation for (Xi, Y, Yj} and X, to the product of the fundamental

equation for IX,Y",Y ) and (-Xi). Since X is assumed coprime with W'W'z n ' and
(XjYj - X1Yj) is a polynomial, it follows that X must divide (Y"Xj - XlY").

Thus, N - pa'( YIX2-XjY)/X in (3.4.4) is a polynomial. To prove that N is a

constant, note that the following inequalities hold true for all i=l to k.

degi(Y"X2 - X'Y") _ ni, degi (XIY2 - X2YI ) < 2n! (3.4.5a, b)

Consider two sets of indices II, 12 such that i c II if degiX - ni, whereas i c

12 if degiX < ni. If i c I1 then from (3.4.5a) and first equality (3.4.4) it
follows that N does not involve zi. If i £ 12 then zn has the a factor z.
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Consequently, due to the assumed relative primeness of XME and wwz! it follows

from (3.2.9a), (3.2.11) and (3.2.14) that neither W' nor W'zn ' may have the

factor zi. which in turn respectively imply that degi(W'zn' )-n! and degiW'-n!.

Therefore, due to (3.4.5b) and the second equality (3.4.3a) N may not involve

z Thus, N - constant.

Lemma 4.3: If (X', Y', Y") is a polynomial triple satisfying the fundamental

equation then the expression given in (3.4.6) is equal to a real constant.

K - (X'X' - pY'Y')/(W'W') - (a'Y'zn'Y" + X'X")/X (3.4.6)

Proof: Consider in view of Lemma 3.4.1 two solutions X - X' Y - Y', Y1 - Y"

and X, - Y'zn ' , Y,' - 'z n , Y" - pci' to the fundamental equation. It then

immediately follows from Lemma 3.4.2 that K in (3.4.6) is a constant. Since for
-2, Yr V j 2 -2,

IzJ-l we have X'X'-IX'I Y'Y'-IY'I and W'W'-IW' j, K is a real constant.

Lemma 3.4.4: If the polynomial triple {X', Y', Y") is a solution to the

fundamental equation then there exists an X" as given by Lemma 3.4.1 such that

{X' + OpY'zn ', ceY' + OX'z! ', mY" - 1po'*X"} is also a solution to the

fundamental equation, where t and 0 are arbitrary complex numbers.

Proof: Follows clearly from Lemma 3.4.1 and the fact that the fundamental

equation is linear.
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3.5. FACTORUATII OF 9:

A solution {X', Y', Y") to the fundamental equation will be called nonsingular

if X'X' # pY'Y'.

Theorem 3.5.1: The problem of factorization of 4 admits a solution if and only

if there exists a nonsingular solution {X', Y', Y") to the fundamental

equation.

Proof: Necessity obviously follows from (3.2.8a) and that W-W'W"g0. If (Xl, Yj,

Y") is a nonsingular solution to the fundamental equation then due to Lemma

3.4.4, X' - aXi + BYIj
n ' , Y' " dY' + OX'zn I Y" -nY' - Opai*X is a solution

to the fundamental equation. Straightforward manipulation then yields:

-- ~ "2 2
(X'X' - pY'Y')/(W'W') - (,MI 2 _ )i 1  (3.5.1)

K1 - (X Xi - pYjYj)/(W'W,) (3.5.2)

Since due to Lemma 3.4.3 and nonsingularity of (XI, Yj, Y"}, K1 is a nonzero

constant, if a and 0 are chosen to satisfy (1c1 2 _03) . Ki we have
(X'X'-pY'Y') - W'W'. Furthermore, there exists X" such that (PY- , Xzn',

-Pc* X"), by the virtue of Lemma 3.4.1, satisfies the fundamental equation.1I
We next show that X', X", Y' and Y" so obtained constitute a solution to the

algebraic equation. Equation (3.2.12b) is obtained by adding the product of

(3.2.17) and X'zn!' to the product of second equality of (3.4.1a) via (3.4.1c)

and (-Y') and subsequently by using (3.2.8a). Likewise, (3.2.12a) is obtained

by adding the product of (3.2.17) and pY'z n  to the product of second equality

of (3.4.1a) via (3.4.1c) and (-X') and subsequently by using (3.2.8a).

Finally, we obtain (3.2.8b) by substitituting (3.2.12a) and (3.2.12b) in (P2)

and then using (3.2.11) and (3.2.8a). Thus, the pair of two-tuples (XI, Y') and

{X", Y") satisfies the algebraic equation and via Theorem 3.1 is a solution to

the problems of factorization of f.

Two polynomials triples (Xj, Ye" Y") and (XI, Y', Y") each satisfying the
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fundamental equation will be said to be linearly dependent if there exists

constants a and 0 not simultaneously zero such that c"Xi + a + Oyi a y1
+ - 0.

2I

Theorem 3.5.2: The problem of factorization 9 admits a solution if and only if

there exists two linearly independent polynomial triples fX!, Y, YV), i-1,2

each of which satisfy the fundamental equation.

Proof: Necessity: Let the polynomials X1, Y', X" and Y" constitute a solution

to the factorization problem. Clearly, {X', Y', Y") is a solution to the

fundamental equation. Due to Lemma 3.4.1, therefore, (pY'z-, X'z-, -pa' XI

is also a solution to the fundamental equation. We claim that these two

solutions are linearly independent, because otherwise there would exist

constants 01, 02 not simultaneously zero, such that OiX' + 020Y'zn' a AlY, +-

_ a 0. Thus, (X'X'-PY'Y') a 0, which in view of (3.2.8a), would imply

that W' a 0, i.e., due to (3.2.11) that W a 0, which is impossible.

Sufficiency: If one of the solutions (X!, Y!, Yi", i-1,2 is nonsingular then

sufficiency follows from Theorem 3.5.1. If both solutions are singular then the

triple {X', Y', Y") obtained as: X' - pXj + qXj, Y' - pY' + qY Y" - pY" +

qY", where p and q are complex numbers, satisfy the fundamental equation.

Straightforward algebraic manipulation via the singularity of the triples {X!,

Y Y ), i-l,2 then yields:

(X'X'-pY'Y')/(W'W') - p] L + p qL, L -(X{X[ - PY'Yi)/(W'W') (3.5.3a,b)

since due to Lemma 3.4.1 Ip z-, Xnz- , -pa*Xl is also a solution, by
invoking Lerma 3.4.2 on the triples (XI, Y, Y ) and {pY ,

1 Yj) an JpZz Pf ~pX) it

follows that L *in (3.5.3b) is a constant i.e., L-L-L . Thus, the right hand

side of (3.5.3a) is 2Re(pq*L), which, if L$O, can be made equal to 1 by proper

choice of p and q. With p, q so chosen {X', Y', Y") would thus be a nonsingular

solution to the fundamental equation, and by invoking Theorem 3.5.1, it then

follows that a solution to the problem of factorization of 4 exists.

The proof of the present theorem is next completed by showing that L*0. For

this, consider the following cases.
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r.

(i) p--l: Assume for contradiction that L - 0, which due to (3.5.3a) implies

that X'X' + Y'Y' - 0 and thus, XI' IY' 2 " 0 for 1zJ-l. Consequently, X' .

0, Y' a 0, and via (3.2.17) Y" a 0, which contradicts linear independence of

I ., Y., V , i. 1,2.

(ii) o - 1: Assume for contradiction that L - 0, which due to (3.5.3b) implies

XjX - YjYj. Since fXI, Yj, Y"l is singular, we have XX - YjYi. The last two

equations together imply XP/Xj - Y /Yi - H2/Hl, where H1 and H2 are coprime

polynomials. Clearly, there exists polynomials X0
1 , Yo' such that

X- HX, Y- - H Y' - H Y' (3.5.4a,b,c,d)1[ Hlo ,  1{ -io, X2H-2Xo, 2 2Yo

Considering the fundamental equation for the triple [Xi, Yj, Y") and [X1, Y',

T"), we obtain (3.5.5a,b) where Y" is defined via (3.5.5c).
2 0

Y" H Y, Y" Y, - " _ _ 'z n''w'Y" (3.5.5a,b,c)

Clearly, Y0 " is a polynomial, since otherwise its least denominator would

divide both H1 and H2, i.e., H1 and H2 would not be coprime.

Furthermore, it follows from (3.5.4a), (3.5.4b) and (3.5.5a) that the degrees

of the polynomials in the triple (Xo , Y;, Yo} cannot exceed the degrees of the

corresponding polynomials in the triple [Xi, Yj, Y"). Thus, in view of (3.5.5c)

[Xo' Yo, Y"), and consequently due to Lemma 3.4.1, {pY'z , X ' , -p0 X}) is
0* 0 0

a solution to the fundamental equation for some X;. This last mentioned

equation along with (3.5.4) and the fundamental equations for (PYjz n ' , xjzn',
-pa X") (cf. Lema 3.4.1) and {pYizn' , X.-n' a *X" yield:

X" - Ho ,  X" H X" (3.5.6a,b)

Next, if we define FO - X'X/X, then by eliminating X" between F and the

fundamental equation for the triple [p n' n' - X") one obtains

(3.5.7).

F0 M (%X4 , W')[ -(PYY A ]X)1 (3.5.7)
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From Property (P2) of f in (3.2.5) we have IY'XI < I on zi=l, whenever X s 0.

Since {Xj, YI' Y ') has been assumed to be a singular solution to the

fundamental equation, we have XiXI - YiYi, thus via (3.5.4a, b), xX =

implying that IX /YoI - 1 on zl-l, whenever Y'o * 0. Then (3.5.7) yields that
ReF 0_ 0 for IzI-l, wherever F is well defined. Using an argument analogous to

that used in the proof of Theorem 3.3.1 it then follows (via discrete positive

nature of F0 ) that X" are widest sense Schur polynomials, and thus, cannot
n0 0 0

contain zi as a factor for any i-i to k. Since in (3.5.6) X and X are

polynomials, it then follows that H1  and H2  are constants. This latter

conclusion violates, due to (3.5.4) and (3.5.5a, b), the linear independence of

(Xi , Y Y1 ) and [X2, Y2, Y }.

The above result can, in fact, be further sharpened as follows. Note that a

corresponding strong result for the continuous case, although true, was not

given in (5].

Theorem 3.5.3: The problem of factorization of 4 admits a solution if and only

if there exists exactly two linearly independent polynomial triples X!, Y,

Y", i-1,2 each of which satisfy the fundamental equation.

Proof: Due to Theorem 3.5.2, it is only needed to show that one can have at

most two linearly independent solutions. Assume for contradiction that {X. , Y',1 1'

Y", i-1 to 3 be three linearly independent solution to the fundamental
equation and X' - + x+ cx , V' - +X + ' + ," +

+ m3Yj. Then [X', Y', Y") and, due to lemma 3.4.1, {py'z- , x'z- , n p ,'X") is

also a solution to the fundamental equation. From Lemma 3.4.3, K as defined in

(3.5.8) is a constant.

K - (X'X'-pY'Y')/(W'W') - (a'Y'z!'Y" + X'X")/X (3.5.8)

Consider next the following cases:

(i) p-l: Clearly, we may choose mi, i-i to 3 such that X'(0) - Y"(0) - 0. Since

X(0)*0 due to the scattering Schur property of X, it follows from (3.5.8) that

K-0 and thus, again from (3.5.8) that X'X' a pY'Y'. Next, define F - (X'X")/X.
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From the second equality of (3.4.1a) and (3.4.1c), one obtains XV - (-Oa -

pYY')/(W'W'). Eliminating X" from the last two equations it follows that F -

(X'X'/WW')1[ - (YY'/O')]. From Property (P2) of # and X'X' - pY'Y', one

respectively obtains for I.zi - 1 that IY/X 1, whenever X*O and IY'/X'I - 1,

whenever X'sO. Using an argument similar to that used in proving Theorem 3.3.1,

it is then possible to show that F is a discrete positive function, and

finally, X'X" is widest sense Schur, which is in contradiction with our

construction that X'(O)-O.

(ii) p--l: We claim that there exists 0 on 1z - 1, such that W'W' * 0 [9] and

ail i-l to 3 can be chosen such that X'(z) - Y'(0) - 0. It then follows from

(3.5.8) that for z - a, K - 0, i.e., IX'I 2+1YI 2 0 implying X' n 0, Y' 0,

and via (3.2.17), Y" a 0, which contradicts linear independence of (X!, Y[,

Y!}", i-i to 3.

To substantiate the claim we show that there exists z-z on 1 - with W'W'

0 such that XiYi - XjYj * 0 and thus, it is possible for any nonzero a3 to

solve the following linear simultaneus equations for a1 and a2 .

x,(£ o ) - a1x'cZ 3XV-) - 0 (3.5.9a)

Y'(-) - a1Yj(o) + a -Y() + 3Yi(zo) - 0 (3.5.9b)

For this, consider a solution Xi - Xo, Yj - Y;, X1 - Xo, Y1 - Y' to the

factorization problem. Then from the necessity part of proof of Theorem 3.5.2

it follows that Xi M pY'z-' YI X , -pa' X; is also a solution to the

fundamental equation and that [X!, Y!, Y), i-1,2 are linearly independent.

Next, for some 0 on [z]- 1 if XIY 2-X2Y'  - 0 then IX'I2 + 1  0 i.e.,
Xo' - 0, Y' - 0, and thus, due to the equation corresponding to (3.2.8a)

satisfied by XW, Y; we have W' - WI - 0. Since W' is scattering Schur, there

exists z on Izf-l with W'sO (91 and, consequently, with XjYi - X'Y $ 0.-o

The fundamental equation (3.2.17), when considered as a set of linear

simultaneous equations involving the coefficients of the polynomials X', Y', Y"

along with the upper bounds on their degrees, turns out to be overdetermined

in general (except when k-l). More explicitly, we note that the unknown
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polynomials X', Y' and Y" contain a total of u unknown coefficients, whereas

the total number of linear simultaneous equations can easily be found to be

equal to e, u and e being as given in (3.5.10a,b) below.

k k k
u - H (n'+l) + 2 R (n+1), e - D (n." + 2n! + 1) (3.5.10a,b)

Since for k>l we have e>u in a generic situation a solution to the problem of

factoring 4 into two matrices of identical kind may not exist.

Delay free loop: In order for the digital network synthesized via the

factorization of f to be 'computable' it may not contain delay free loops

arising from interconnection of two sections. It is known (1] that this problem

can always be circumvented, at least in the one-dimensional case, by

incorporating digital equivalents of unit elements. The structures resulting

from factorizations e - e", r - r'r", Z - r'r" are shown in Figures 3.1, 3.2

and 3.3 respectively. An examination of directions of signal flows in Figure

3.3 shows that the topological structure arising from the factorization of E

as Z - El E" cannot contain any delay free loop at the junction of the two-ports

V and V". On the otherhand, Figures 3.1 and 3.2 clearly show that the

topological structures arising from the factorization of e as 9 - e'9" and r as
r - r'r" may contain delay free loops unless special attention is paid to this

issue (note that both of these cases correspond to the choice p-l). However, as

shown in the following, delay free loops at the junction of the two-ports

associated with 9' and " may always be avoided by extracting an appropriate

constant (generalized) lossless two-port matrix from 4" and subsequently

combining it with 4' (the obvious alternative of extracting a constant matrix

from 9' and combining it with " also apply).

Fact 3.5.4: Any generalized lossless two-port matrix " with p-i can be

factored into the product of two matrices f and f r of the same type i.e.,

fith r , where #f - constant, and #r is such that the Y-polynomial associated

with it assumes a zero value for z-O.

Proof: Let K - Y"(O)/X"(O), where X" and Y" are corresponding polynomials

associated with 4", and 4" be defined as follows.
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bK

# JK -/1 2)  (3.5.11)

LL

Since p - 1, it respectively follows from Properties (P2) and (P4) that IY"/X"1
< 1, wherever X"*O on IzI-l and that X" is scattering Schur. The last two

properties, due to an extended multidimensional version of the maximum modulus

theorem proved in [91, imply that either Y"/X" - unimodular constant or Y"/UX"I

< 1 for IzJ < 1. In the former case we would have, due to Property (P2)

satisfied by 4", that W".O, which is impossible. In the latter case, we have,

in particular, tKJ - IY"(O)/X"(O)I < 1. Thus, V' is a generalized lossless

two-port matrix with p-l. Since it is easily verified that (#")-i also

satisfies this property it follows from Fact 3.2.1 that 4" - (r )-10 is also a

generalized lossless two-port matrix. Finally, the fact that Y-polynomial

associated with V", say Y", satisfies Y"(0) - 0 follows from Y"
* 2 r r r - r

(Y"-K X")/I(l-IKI 2 ) (obtained by considering the (2,1) entry of the matrix

equation V" - (#)-lV) and K - Y"(O)/X"(O).r f

Next, if 4 is factorable as 4 - '" then due to Fact 5.4 we may also write 0 -

c where #1 - 0'4#, due to Fact 3.2.1, is a generalized lossless two-port

matrix. Further, it is trivially verified that if 4' and 4" satisfies the

requirements imposed in the 'Main problem' of Section 3.2 then #c and ff also
satisfies the same requirements. Thus, f - %.4 is a valid solution to the

factorization problem.

If " is viewed as a chain matrix G", then (assuming that the operation of

shifting the factor #" from " into 4' has been carried out) we have that Y"(O)

- G9i(Q_ - 0 i.e., the corresponding transfer function matrix would in view of

(3.2.1) satisfy E" (0) - 0. Consequently, there w'nuld be no direct path from

'a' to 'b' via 4" - 9" in Figure 3.2. Similarly, if 4" is viewed as a hybrid

matrix r" then the corresponding trasnfer function matrix would satisfy E"1 (O)

- 0, thus guaranteeing no direct path from a' to 'b' via #" - r" in Figure
3.3. In either case, no delay free loop exists at the junction of the two

two-ports. Note further that 4" as in (3.5.10) correspond to the chain matrix

or the hybrid matrix of the well known Gray-Markel section.
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Furthermore, when p-1, X" is scattering Schur and thus X"(O) # 0. It then

follows from (3.2.12b) that if Y(0) - 0 and Y"(0) - 0 then Y'(0) - 0. This fact

guarantees that the prescribed generalized lossless two-port matrix 0 can be

successively factored into product of generalized lossless two-port matrices of

progressively lower complexity in such a way that the Y-polynomial associated

with each of the factors of 0 except possibly the one at the extreme left when

* is interpreted as chain matrix e is equal to zero for z-0. Similar

considerations apply when 4 is a hybrid matrix r. Absence of delay free loops
at each junction of the constituent two-ports, when a given two-port is

fragmented into an interconnection of more elementary two-ports via the method

of factoring #, is thus guaranteed.

The algorithm for factoring # can then be summarized as follows:

Step 1: If the prescribed $ be such that associated XXz n_ and WWzn are coprime

then proceed to Step 2. Otherwise, factor 4-#19 o*2 as described in the proof of

Proposition 3.3.2. Replace # by 0 .

Step 2: Find, if possible, two linearly independent solution IX, Y', Y, i-1,
-- _ I 1 1

2 to the fundamental equation (3.2.17). In the 1-D case such a solution always

exist. Factorization of f is impossible if such solutions are nonexistent.

Step 3: If at least one of the two linearly independent solution is nonsingular

i.e., XX. * YY for any i then proceed to Step 4. Otherwise, proceed to Step

Step 5.

Step 4: Assuming that {Xi, Yj, YI] is a nonsingular solution, find X" from the

second equality (3.4.1a) and (3.4.1c) where Y' and X' are replaced by Y, and X1

respectively. Also, find K1  from (3.5.2) and m, 0 such that l 2 _ P1012i" + i! " yi +  n ",[-8 'x1/K I . Finally, form X X- + sp_ ', , + C opa -

proceed to Step 6.

Step 5: Find the constant L as in (3.5.3b) and p, q such that 2Re(pq L) - 1.

Form X, - PXi + qX, Y, - pYj + qYj, Y" - pY" + qY"

Step 6: Find X" from (3.2.12a). Thus, (X, Y') and IX", Y") i.e., ' and 4" are
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obtained.

Step 7: If p-i then from X", Y" associated with ", find K-Y"(O)/X"(O), as

in (3.5.11), Vr - and let V - 'C}. Thus, 4- Oct" without delay free

loop at the junction.

Remark: Since K1  in (3.5.2) is a real constant it is possible to choose real

values of a and I such that the right hand side of (3.5.1) is equal to 1. If 4

is real (i.e., X, Y, W have real coefficients and --+1), then Xi, Y', Y" as a

solution to the fundamental equation, and thus, X', Y', Y" must also have real

coefficients if a and 0 are chosen to be real. Since this implies that the

coefficients of X" are real, the factors #' and 4" would then also be real.
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3.6. CE,-DIPMISCIL SYNTHESIS AS A SPECIAL CASE:

In the one-dimensional case i.e., if k - 1, a closer examination of (3.5.10a,b)

reveals that u - e - 2, and, therefore, there are two more unknown

coefficients than the number of linear equations in the set of linear

simultaneous equations which determine the solution to the fundamental

equation. Thus, there are (at least) two linearly independent solutions of the

fundamental equation, and in view of Theorem 3.5.2, the problem of

factorization of # always admits of a solution. Consequently, structurally

passive synthesis for # is achieved by performing a sequence of further

factorizations of #' and " into the same kind of matrices of progressively

lower complexity i.e., n{ < nI, n" < n (since n{ + n" - n1 ) until a stage is

reached when each of the resulting matrices cannot be factorized any further.

This latter situation corresponds to the case that each of the two-ports

resulting from the decomposition satisfy n1 - 1, i.e., deg1 C < 1 and deg, B <

1 and deg, A 5 1. However, if the prescribed 4 is such that X, Y, W have real

coefficients, a-+1 and W has complex roots then it is necessary to allow

two-port sections with n1-2, degW-2 if realization involving only real

multipliers are sought. In order to avoid delay free loops at the junction of

the two-ports we further require that two-port sections satisfy Y(O)- 0 when p
- 1 or equivalently, B - 0 when * - 9 and C - 0 when # - r for z1 - 0.

Two-port sections of the above types will be called elementary sections and can

in turn be realized in structures possibly other than those considered here by

exploiting synthesis techniques as discussed, for example, in [4]. Thus, the

following elementary sections are obtained.

An arbitrary lossless chain matrix e with nI - 1, B(0) - 0 can be synthesized

by using the procedure described in [4) in a structure given in Figure 4,

whereas an abitrary lossless chain matrix e with n1 - 2, B(0) - 0 can, by

following the same procedure, be synthesized in the structure of Figure 3.5.

A lossless hybrid matrix with n1 -1 and n1 - 2 (assuming Y(0) - C(O) - 0) can

respectively be realized by the same elementary sections as described in the

Figures 3.4 and 3.5, but after a clockwise rotation of the corresponding

diagrams by an angle of 90 degrees.
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On the other hand, an arbitrary lossless transfer function matrix I (in this

case, we may not assume Y(O) to be zero) with n1 - I or n1 - 2 can be realized

by using the elementary sections described above only after a Gray -Markel

section has been extracted from the corresponding chain matrix (or hybrid

matrix) so as to effect a zero value for B(O).

Thus, an arbitrary lossless two-port can indeed be synthesized as an

interconnection of Gary-Markel sections and the sections depicted in Figures

3.4 and 3.5 only. Note that sections of Figure 3.4 and 3.5 were introduced by

Dewilde and Deprettere in the context of cascade synthesis [19], and can be

viewed as scaled versions of interconnections of wave digital filter adapters

(181.
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3.7. DISCXISSIONS AND ILLUSTRAVE EAMPLS:

The purpose of this section is many fold. First, we examine the structure of
the fundamental equation in somewhat more detail to facilitate the method of

solution both for the 1-D and the k-D case. Although it has been remarked in

Section 3.5 that the 4-matrix is generically not factorable in multidimensions,

the possibility of synthesis for special classes of 4-matrices may not be ruled

out. Furthermore, in k-D, nonfactorability of any one of the three matrices, E,

e, or r associated with a lossless two-port does not rule out the factorability
of other two matrices. This fact is next substantiated via examples, thus

justifying the need to study factorization of all three types of matrices (in a

unified manner). Finally, in practice, all multidimensional frequency filtering

problems require some form of symmetry in the k-D frequency response, and it is

known that such symmetries dictate that the two-port be either symmetric or

(quasi) antimetric in the sense of classical network theory (to be made precise

later in this section). This is indeed the case, for example, in the design of

2-D fan (201 and k-D circularly symmetric (211 wave digital filters based on

transformations from analog prototypes. Therefore, the factorabilty of the

E-matrix associated with these subclasses of discrete lossless two-ports is

also undertaken in the present section.

A. Computational considerations:

For the purpose of the present discussion, the following notations will be

adopted.

X(z)-E i' , Y(z)-n Q(z' )zi, pW'W'zn'-E Ri(z')z (3.7.1 a,b,c)

i ' - ' Y i
X'(z)-r P!(z')z, Y'(z)- Qi(z')z Y"(z)- R 1)z (3.7.2 a,b,c)

where z' is the k-tuple of integers (z2, Z3 ,...Zk) and Pi-Pi(z'), Qi-Qi(z'),

Ri-Ri(z') and P-P.(z'), Q.-Q.(z'), R.-R!(z') are polynomials in z'. Then the

fundamental equation (3.2.17) can be written in the form of (3.7.3):

V(z')T(z')-0, T-T(z,)-[T I T t I T t "  (3.7.3 a,b)
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V(z) - [Q ' "% I -P1  "-P6 I . (3.7.3 c)

where the superscript 't' denotes matrix transposition, T1  is a

(ni+l)x(nl+ni+l) lower shift matrix whose first row is the (k-i) variable

polynomial matrix: [Pn I .... P0  0,...0] and subsequent rows of which are

obtained by shifting ihe previous rows by one step towards the right. The

(n1+l)x(n1+n1+l) matrix T2 and the (n1+l)x(n1+n1+l) matrix T3 are similarly

obtained from the polynomial row vectors: (Qn ''.Q0, 0,...0 and [R2 no ...RO,

0,...0 respectively. For a given T(z')l a solution V(z') to 3.7.3a)

corresponds to a solution to the fundamental equation if in (3.7.3c) the

following degree restrictions for all v are satisfied for each i-2 to k.

dei < W degP, < nW, dgR < n7 (3.7.4)

As remarked earlier, if k>l for a given T(z) a solution V(z) satisfying

(3.7.3a) and (3.7.4) may not, in general, exist. However, the following

approach may be adopted in attempting a viable soltcion. First, find the

Hermite reduced form H(z') of T(z') via the pseudo-division algorithm as

described, for example, in (221, (231 i.e., find a unimodular matrix U(z') such

that U(z')T(z') - H(z') is in Hermite form. Since T(z'), and thus, H(z') has

(n1+ni+l) columns, but (n1+n 1 +3) rows, the last K rows (K>2) of H(z') are

identically zero. Consequently, each of the last K rows of U(z') belong to the

left null space of T(z'). However, in order forany vector belonging to this

space to correspond to a solution of the fundamental equation, (3.7.4) must be

satisfied, which, generically, may fail. To elaborate further on this it may be

remarked that (proof ommitted for brevity) in the special case of 2-D i.e.,

when k-2 and if ni-n" a necessary and sufficient condition for the existence of

two linearly independent solutions to the funamental equation i.e., that of

factorability of # is that the dimensionality of left null space of T(z')-T(z2 )

be exactly two and the two left Kronecker indices [23] of the polynomial matrix

T(z')-T(z2 ) be each equal to nimn". we have so far been unable to establish an

analogous characterizaion of factorability when n2#n .

In the 1-D case (k-l), however, bo.h V-V(z') and T-T(z') in equation (3.7.3a)

are constant matrices. Furthermore, since it is known that the lower shift
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matrices TI, T2  and T3 are closely related to Toeplitz as well as

resultant-like matrices, the linear simultaneous equation (3.7.3a) can be

potentially solved by exploiting recently developed fast algorithms for solving

such equations [24]. Furthermore, it can be shown by pursuing the proof

technique for Theorem 3.5.3 that in obtaining two linearly independent

solutions to the fundamental equation, one of the zeros of the polynomial

Y"(z1 ) may be chosen arbitrarily. Once such a choice is made, the solution to

the fundamental equation becomes essentially unique except for a constant scale

factor multiplying each of the polynomials {X', Y', Y") in the solution. It can

be shown that each of these three polynomials in this solution can in turn be

expressed via closed form determinantal formulas as discussed in (25]. From a

computational standpoint this latter method, as opposed to the Toeplitz-like

method mentioned above may not, however, be the most inexpensive when the

integers ni nI, and thus, n are large.

B. Examples on factorability of E, 9 and r:

We next illustrate by three examples that in multidimensions by viewing the

#-matrix as three different types of matrices associated with a two-port,

namely the transfer function matrix E, the chain matrix e and the hybrid matrix
r, the synthesis of a larger class of discrete lossless two-ports can be

attempted than by considering the factorization of a matrices of only one of

the above kinds.

(I) Consider a discrete lossless two-port described by A - PQ, B, and C - 2RS,

n - (3,3) and a--1 as in (3.2.1), where

P-z 2 _2z z +Z +4, Q-z 2 2 z 2 +Z +4,

Bu4zlz2-4zlz2-5Zlz2-6 l2 27l223 4l26l2432-25 l4,
12 2 1 2 2 2

1 2 1 2 12 2 12 1 2 12 12 21 1 1

R-ZZ 2-1, S-z z2-z2+z z2 +4zlz 2-Z2-z -z -2

In attempting a nondegenerate factorization of the corresponding G-matrix (P=)

into nonconstant 9' and e" we encounter the following distinct possibilities:

(i) n'-(2,2), n"-(1,l), Y'- C'- S, Y"- C"- 2R (ii) n'-(1,1), n"-(2,2), Y'- C' -
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R, Y"- C" - 2S. Neither in case (i) nor in case (ii) we have two independent

solutions to the fundamental equation (3.2.17). Via Theorem 3.5.3, we thus

conclude that e cannot be factored as e'S". However, the corresponding r can

factored as E - 1,r" where E' and E" are described as (clearly, p-p'-p"-l in
this case):

W'- A' - P, X'= B'- 2z z -2z z2-2z2+2, Y'- C'- z2+2z2 +l, am-i
WI' A" 1 Q2 2" 2 2

W"= All Q, X"- B1- 2z z2-2z z2 -2z +2, Y"= C"= z2+2zl+l,

Since the above e can also be viewed as a hybrid matrix r (with slight

modifiation in the sign of a), the example also demonstrates that there exists

discrete lossless two-ports for which the associated transfer function matrix

can be factored but the associated hybrid matrix may not be factorable.

(II) Consider the discrete lossless two-port given by A, B - 2PQ, C - RS,

n-(2,2), a-i, where

A2 2 22Rz+Sz-
A-3-z12z 2-z2z2, P-l-zZ 2, Q-l+zz 2, Rz z 2+z+Z+l, S-Z Z2-Z2-Z +1

An attempt to factor r into nondegenerate nonconstant factors r' and " gives

rise to the following two distinct possibilities with n'-n"-(1,1) in both

cases: (i) Y'- B'- 2P, Y"- B"- Q (ii) Y'= B'= Q, Y"- B"- 2P. In neither of the

above two cases the fundamental equation is found to have two linearly

independent solutions, thus proving, in view of Theorem 3.5.3, the

impossibility of the intended factorizaion. However, the corresponding S-matrix

can be factored as 9-9'e", where 9' and e" are described withy p-p'-p"-l as:

X1- A'-(z1z2+2zI +2z2+3)//3, Y'- B'-(zI+Z 2+2)//3, W'- C'- R, a'-1

X"- A"-(z1z2-2z1-2z2+3)//3, Y"- B"-(-2z1z2+Z2+Z1 )//3, W"- C"- S, a"-i

Note that Y"(O)- B"(O) - 0; thus, there is no delay free loop at the junction

of the discrete two-ports. By interchanging the roles of B-polynomial and the

C-polynomial in the above example we can similarly demonstrate the existence of

a discrete lossless two-port for which the r-matrix can be factored as r-r'r",
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but the associated e is not factorable as e-e'ef.

(III) Consider next a discrete lossless two-port described by A, B, C-S,

n-(2,2), a-1, where

2 2 22 2 2 2A--(7+3Zl-2Z2-2ZlZ2-Z2+3ZlZ2 ), B ZlZ2-3ZlZ2+Z1+Z1-2ZlZ2 -2ZlZ2-4,

R-z +l, S=2z z -2z z2-2z2+2

A detailed examination of the degrees of the polynomials A, B and C reveals

that the only possible way of factoring the transfer function matrix Z

associated with the two-port is to attempt either (i) n'-(1,0), n"-(1,2), A'-l,

A"-A or (ii) n'-(l,2), n"-(1,0), A'-A, A"- 1. In both cases, however, the

fundamental equation (3.2.17) fails to yield two linearly independent

solutions. Thus, E-matrix associated with the discrete two-port under

consideration cannot be factored. On the otherhand, the associated chain matrix

9 can be factored as &-e'e", where e' and e" are described as:

a"-l, a'-l, W'- C'- R, W"-C"-S, X'- A'--(z 1 +7)//15, Y'- B'-(2z1-4)//15,

V"- A"-(4z z 2_8z z +4z-z 2_2z +15)//l5, V"- B'-(-z z 2+4z 2+2z z +8Zz O)/l5

Note again that Y"(0)-B"(0) ensures that there is no delay free loop at the

junction. By viewing the chain matrix as a hybrid matrix the same example with

minor modofications can be used to show the existence of a discrete lossless

two-port for which the transfer function matrix r cannot be factored, although

it is possible to factor the associated hybrid matrix r.

C. Synmetric and (quasi) antimetric two-ports:

A discrete lossless two-port will be called synmuetric or (quasi) antimetric if

(3.7.5) (or (3.7.5')) holds true. Note that the former case corresponds to fan

type symmetry [201, whereas the latter case correponds to circular synmetry

[211 in frequency response.

Cc-Czn, BmEOBz n (c--O&z ,  n &-a-tz) (3.7.5) ((3.7.5))
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Let the rational functions L1 and L2 be defined as in (3.7.6) (or (3.7.6')) for

symmetric (or (quasi) antimetric) filters.

L -(B+C)/A (or (B+jC)/A ) (3.7.6a) ((3.7.6'a))

L 2=(B-C)/A (or (B-jC)/A ) (3.7.6b) ((3.7.6'b))

Then it clearly follows from (3.2.4c) that LII-L 2L2-1, and consequently,

IL1 1-L21-1 for jzj=l, wherever L1 or L2 are well defined. Since both L1 and L2

have scattering Schur denominators [9], it follows that L1 and L2 are both

multidimensional discrete all-pass functions. By making use of (3.7.6) (or

(3.7.6')), E as in (3.2.1) can be expressed as in (3.7.7a) and (3.7.7b) in the

symmetric case and as in (3.7.7'a) and (3.7.7'b) in the (quasi) antimetric

case.

r 11 ME22=-(LI+L 2)/2, Z 12=-E21'(L -L 2)/2 (3.7.7 a,b)

E11- 222(L1+L2 )/2, E21--r12=j(L 2-L,)/2 (3.7.7' a,b)

Conversly, for any two discrete all-pass functions L1 and L2 the matrix Z

obtained by using (3.7.7) (or(3.7.7')) is a valid transfer function matrix of a

discrete lossless two-port. Thus, any multidimensional discrete lossless

two-port can be equivalently described by means of two multidimensional

all-pass functions L1, L2. We then have the following important result.

Theorem 3.7.1: Let (LI, L2), {Li, Lj), {L', L-) be the all-pass functions

associated with symmetric (or (quasi) antimetric) discrete lossless two-port

transfer function matrices E, E' and E" respectively. Then E - E'E" if and only

if L1 - LIL" and L2 - L2L " hold true.

Proof: Expressing E - E'r" in terms of the corresponding L1 and L2 via (3.7.7)

(or (3.7.7')) and its counterparts for E' and V", it follows that the

factorability condition E - L'" is equivalent to L1 - LjLj, L2 - LL.

Since it can be easily shown by pursuing methods outlined in [9) that any
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rational all-pass function L can, in fact, be expressed as L-(P/P)zm in

irreducible form, where P is a scattering Schur polynomial, Theorem 3.7.1

conveys the important fact that the factorability of multidimensional symmteric

or (quasi) antimetric discrete lossless two-port transfer function matrices can

be simply expressed in terms of factorability of two scattering Schur

polynomials.
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3.8. SUMIAY:

The present work has been motivateO by the possibility of designing

structurally passive multidimensional digital filters. A simple algorithm

involving the examination of solution ot a set of linear simultaneous equations

for studying the synthesizability of an arbitrary multidimensional discrete

lossless two-port has been derived via factorization of the associated chain

matrix 9, hybrid matrix r and transfer function Z by introducing a generalized

lossless two-port matrix f, which in turn can be considered as a

multidimensional version of the sigma-lossless transfer functions discussed in

the 1-D literature. It turns out that under a generic situation, synthesis not

be feasible. In the special case of one-dimension our algorithm provides new

methods of realizing structurally passive filters directly in the digital

domain. Although in the multidimensional (k>l) case synthesis may not be

feasible for an arbitrary discrete lossless e, r, and Z, the possibility of
synthesis for special classes of discrete lossless two-ports is by no means

ruled out. Examples of such subclasses of two-ports such as the synetric or

the (quasi) antimetric discrete lossless two-ports have been discussed.

Existence of other classes of discrete lossless two-ports admitting synthesis,

albeit in special topological structures, seems feasible, but remains to be

identified. This is especially true in view of cascade synthesizability of

certain classes of two-dimensional continuous time systems arising in studies

of lumped-distributed netwoks [22). It may be noted that the cascade

synthesizability of lumped-distributed networks can be characterized in terms

of properties of certain polynomial matrices having the structure of

bigradients (otherwise called resultants). The occurrence of polynomial

matrices of similar type has been noted in our study in the context of

computing a solution to the fundamental equation (cf. equation (3.7.3)).

However, further investigation is needed to explore this connection in

successfully utilizing the results of lumped-distributed network theory in

multidimensional digitel filter design.
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CHARPT 4

SWTHESIS AND DESIGN OF STIRVCTUALLY PASSIVE

FULLY RECRSrIVE 2-D DIGITAL FILTERS

Various recursive schemes have been proposed in the multidimensional (m-D)

digital filter literature. Among these the most widely studied are the quarter

plane, the asymmetric and the symmetric half-plane recursive scheme. More

recently, motivated by needs for parallel processing of 2-D signals a scheme

known as the fully recursive half-plane scheme has been proposed in [15], and a

method of designing transfer functions of filters having this recursive

structure has been outlined in (5]. The impulse responses of the class of

filters just mentioned satisfies the characteristic property that the region of

support is a half-plane and the filter is recursive in both horizontal and

vertical direction. More specifically, the recursion equation describing the

relation between the input x and output y of a filter of this type is given by:

L ({yn(m)}] -- L[{yn_(m)] + L[{x ((411
0 i-I i i-O 1

where xn(m), Yn(m) denote the n-th row of the input and the output signal;

thus, for example, xn(n) - x(m,n) for m - 0, + 1, + 2 ...etc; and the (row)

operations Li.] and L[.] respectively denote I-D linear shift invariant

convolution operations with the 1-D sequences aim) and bi(m). Considering the

2-D Z-transform of (4.1.1), and assuming that the operations L[.] and 0[.

are all rational we then have (4.1.2) for the transfer function of the filter,

where the rational functions Ai(zI), Bi(z 1 ) representing the row operations

just mentioned are expressed in irreducible rational form (i.e., as the ratio

of two relatively prime polynomials) as in (4.1.3).

Y(z11Z )/X( z 2  - A~ (z )z/ Bi(z)z (4.1.2)
i0i-

A )  b(z) (Z 0,1,. N  (4.1.3a)

B(z 1 ) - z il)/D(z i - 0,,...LD (4.1.3b)
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On the otherhand it is now well known that an input-output description such

as the one expressed in (4.1.2), (4.1.3) is not enough for the successful

operation of a digital filter but structural considerations need to be taken

into account. The class of structurally passive filters variously known as the
wave digital filters [161, orthogonal filters (17] or the lossless bounded real

filters (181, when properly designed, are known to satisfy the properties of

insensitivity to coefficient perturbation and non-linear arithmatic conditions

resulting from overflow, finite precision arithmatic etc. Although much

progress has been documented in the synthesis and design of 1-D structurally

passive filters, methods for two and higher dimensions are still evolving.

Synthesis methods for two and multi-dimensional wave digital filters, which are

quarter plane type filters have been reported in [16], [7]. Quarter plane and

asymmetric half-plane generalizations of 1-D lattice filters which are, in

fact, structurally passive, have been discussed recently in the context of

random field modeling in [il ], [ 19 1.

Following 1-D, in the present paper (pseudo) passive or (pseudo) lossless
fully recursive half-plane 2-D digital filters are introduced and a method of

their structurally passive synthesis and subsequently that of their design is

discussed for the first time. The problem of synthesis of quarter plane causal

(thus, including filters causal in a convex cone (20]) structurally passive

multidimensional filters of the type mentioned above can be equivalently viewed

as the classical network theoretic problem of synthesizing a lossless but

otherwise arbitrarily prescribed multidimensional transfer function as an

interconnection of elementary building blocks such as capacitors and inductors.

This latter problem is completely unresolved in multidimensions (m>2), whereas

in 2-D synthesis is feasible only in an unconstrained topological structure

[201. On the otherhand, it has been shown that if certain ladder-like

constraints are imposed on the structure in which the filter is to be

synthesized then the prescribed 2-D transfer function must satisfy further

restrictions in addition to input-output losslessness [211, [22], [231.

Related otner synthesis results [71, [161 in this context deal with important

special cases when the multidimensional frequency response of the filter

possesses certain symmetries. In contrast, the present work provides us with a

synthesis of arbitrary lossless fully recursive half-plane 2-D filters.
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Additionally, unlike the quarter plane case referred to earlier the synthesis

is obtained in a fixed predetermined structure potentially useful for practical

implementation.

As in most passive or lossless filter design techniques our synthesis

method proceeds by viewing the prescribed passive transfer function as being

embedded into the transfer function of a lossless two-port. The synthesis of

this fully recursive half-plane lossless two-port takes advantage of a recent

algorithm for the design of structurally passive 1-D filters advanced by Rao

and Kailath (61 as an extension of the celebrated Schur algorithm [9]. Unlike

all other methods known for the synthesis of 1-D continuous as well as discrete

lossless two-ports including those available in the classical circuit theoretic

literature, the algorithm of (6] enjoys the unique feature that given a

transfer function associated with the lossless two-port the synthesis algorithm

makes use of rational arithmatic operations only (i.e., nonrational arithmatic

operations such as polynomial factorization is not required) (10]. The

sy.nthesis method for fully recursive half- plane filters to be presently

described fully exploits this rational character of the 1-D algorithm in (6].

Although the details of the method differ nontrivially form 1-D due to

considerations characteristic of multidimensional problems (e.g., those

utilizing techniques from elementary algebraic curve theory (3], [12]), the

synthesis to be outlined can be considered, at least at a conceptual level, to

be a generalization of the result in [6] to two-port transfer functions the

coefficients of numerator and denominator polynomials of which belong to a

field of rational functions (instead of the field of rational numbers). From a

different perspective the present work can also be viewed as a generalization

of 1-D Schur algorithm to 2-D fully recursive half-plane filters, thus making

it possible to cast the present discussion in the closely related framework of

modeling of stationary random fields and scattering theory (9].

A note regarding the stability of the filter is in order. The region of

analyticity of the transfer function of our filter will be found to marginally

differ from those previously considered in the 2-D half-plane literature [4],

(5]. This is primarily due to the fact that the results such as those in [4],

[51 are motivated by bounded-input-bounded- output considerations, whereas, in

contrast, our results are driven by passivity considerations. The fact that

85



this difference in consideration does indeed lead to diverging formulations of

stability in multidimensions (m>l), but not in l-D, is now known (1], (2].

Thus, there is no contradiction between our stability results and those

existing in the half-plane literature so far.

In Section 4.2 the fully recursive half-plane passive one-ports are

characterized in terms of their transfer function. Similar considerations in

the context of two-port transfer functions form the context of Section 4.3. A

representation theorem for fully recursive half-plane lossless two-ports

analogous to that of the Belevitch canonical form [8) of representation for

lossless 1-D continuous two-ports of classical network theory is developed

here. In Section 4.4 the synthesis method based on this representation theorem

is described, and in Section 4.5 a design methodology is proposed by taking

into account the symmetry requirements (14] on the frequency response imposed

by many practical multidimensional processing tasks.
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4.2. FULLY RE3SVE SYMKIE C HALF-PLANE PASSIVE SYSTEMS:
2

By associating the (pseudo) energy ELIx(nln 2)H to the input x(n1 , n2 ) of the

system we first develop conditions necessary for the transfer function of a

fully recursive half-plane filter to be passive in the sense that:

Zr ly(n I , n2)2 <2 E Ix(n1, n2)12  (4.2.1)

for any choice of square sunmable input sequence x(nl, n2).

By choosing x(nI , n2) - 6(nI , n2 ) i.e., the 2-D impulse function, the impulse

response h(n1, n2 ) of the filter can be obtained as the corresponding output.

We then have:

y(n1 , n2) h(n1 , n2) Z E hk(n 1 ) 6(n2-k) (4.2.2)
k=O

where hk(nl), k-O,l,...etc. are certain 1-D sequences and S(.) is the l-D

impulse sequence.

Considering the z-transform of (4.2.2) we obtain:

n nl k
H(zl, z2) - Z (Z hk(nl)zI ] z2  (4.2.3)

k-O n1

Using the Schwartz inequality it follows from (4.2.3) that

2 n1 2(424
z~l" kz2  E( hk(nl)zl1 2JH(z I , z 2Hl < k(z 2 ) • Z 1Zhk(nI) (4.2.4)

k-O n1

where k(z2) 1 + 1z212+ Iz 2
4 + .... etc.

If we consider the special case z1  - exp(j(I4) then we have (4.2.5) from

(4.2.4).

IH(e , z2 )1 < k(z2) 1 . k( W)1 (4.2.5)

k-O

where Hk(ali ) is the Fourier transform of hk(n1) for each k - 0,1,2,...etc.
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On the otherhand, substituting zi - exp(jwi), i = 1,2 in (4.2.3) we obtain that

the Fourier transform H( ,w2 ) of h(nl,n 2 ) is given by:

H(cl, a2) - : Hk( w) e (4.2.6)
k-O

which in turn yields that:

IH(wl, 2 )2 - IHk( w ) 12 + terms involving e with n*O
k-0

(4.2.7)

Assuming termwise integrability of the right hand side of (4.2.7) we then have:

+n+ n 2 n a 2
f JH(u ,&2)jdc-3dw - 2n _ ( Z Hk()I I dt 1  (4.2.8)

-n-n -n k=O

However, by the 2-D Parseval's formula the left hand side of (4.2.8) is equal

to (4n2)Elhln I , n2)1 2 i.e., the total (pseudo) energy in the signal h(nl, n 2 ),
whereas the right hand side can be similarly interpreted as the sum of the

(pseudo) energies contained in the row outputs h0 (n1 ), h1 (n1 ),...etc.

Furthermore, if we assume the fully recursive filter under consideration to be

passive then from (4.2.1), first part of (4.2.2), and the fact that x(nl,n 2) -

6(nl,n2), it follows that EZ lh(nl,n 2)1 2 < _. Thus, the integral in the left

hand side of (4.2.8) is finite, and consequently, except possibly isolated

values of t in the interval [-n,nJ, the integrand in the right hand side is

bounded i.e., we have:
mI

7 IH k (l)1 2 < (4.2.9)

k-0

In view of (4.2.5) and the fact that k(z2 ) < 1 for 1z2 1 < 1 we then conclude
that for all (zlf - 1 except possibly isolated values on the unit 5,cle and0
for all Iz2 1 < 1, H(zlz 2 ) is bounded; and furthermore, if H(e , z20 ) is

unbounded for some Iz2I < 1 and real wI0, then E JHk( 0 2
must be

unbounded, and thus H(e 0 ,z 2) must also be so for all z2 .

We digress temporarily to examine a consequence of passivity reflected on the
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transfer function H(zI, z2 ) of the filter. By using the 2-D Parseval's

theorem, (4.2.1) and the fact that Y(wl,w 2 ) - H(wI,w 2 )X(I,u 2 ), where Y(wI,42),

X( wIw 2 ) are the respective Fourier transforms of y(nl,n 2 ), x(nl,n 2 ) we have

that

n n2 2I IIX('l,,02)I (I-IH(w,&,2 )I1) dw, dw2  0 (4.2.10)
-It-n

Since (4.2.10) is true for any input X(wIw2), we have that IH(wl,w2)i l for

all real two-tuples (ui,w2) except possibly for finitely many of them.

Consequently, if H(e 1,z 20) is unbounded for some Iz20 1 < 1 and real wI0'

then as shown previously H(e ,z2 ) would be unbounded for all z2, and thus

for all z2 on Iz21 - 1 in particular. This latter situation would then violate

the conclusion of the last paragraph. Thus, H(zIz 2 ) is bounded for all Iz1l -

1 and Iz21 < 1.

We next make the silplifying assumption that for each k - 0,1,...etc.

Hk(Zl) - E hk(nl)zl i.e., the z-transform of hk(n I ) are rational functions in
n

zI. Sin 4 the recursion equation for the fully recursive symmetric half-plane

filter is given by (4.1.1) it is clear that the transfer function H(z1 ,z2 ) is a

rational function of z2. Under the present assumption however, H(zl,z 2 ), in

view of (4.2.3), becomes as in (4.1.2) and (4.1.3) a rational function of both

z and z2, and can be expressed as the ratio of two relatively prime

polynomials b(zlz 2 ) and a(zlz 2 ) as:

b(z,,z2 )

H(zlZ 2 ) -

a(zl,z 2 ) (4.2.11)

We now claim that for passive systems presently under consideration, the

polynomial a(zl,z2 ) in (4.2.11) cannot have infinitely many zeros on the

distinguished boundary Iz11 - Iz2 - 1 of the unit bi-disc. For, if a(z1 0,Z20 )

- 0 for some Iz10 ! - Iz201 = 1 then in view of (4.2.11), in order for

jH((Ica2)j < 1 to be satisfied we would need b(zl0,z20 ) - 0 i.e., a(zl,z 2 ) and

b(zl,z 2 ) would have a common zero on IzlI-Iz 21-l. However, the presence of
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infinitely many such zeros would, in view of Bezout's theorem in algebraic

curve theory 13], require that b(zl,z 2 ) and a(z1 ,z2 ) have a comon factor,

which has been hypothesized to be absent in (4.2.11).

A further consequence of passivity is that when the transfer function H(ZlZ2),

is expressed in terms of ratio of two relatively prime polynomials b(z1 ,z2 ) and

a(zl,z2 ) as in (4.2.11), it must be true that a(zl,z2 ) is relatively prime with

the polynomial a(zl,z 2 I defined as:
If (z ' .dI d2 .  , ,-i ,-i

a(zlz 2) - S(z11z2 )zI z2 , S(z1,z2 ) - a (zI  ,z2  ) (4.2.12 a,b)

where dI, d2 are the partial degrees of a in z1 and z2, and * denotes complex

conjugation. To prove this let g(z 1,z 2 ) be the gcd between a(zlz 2 ) and

a(zl,z 2 ). Then as shown in [2] we must have g(z1 ,z2 ) - yg(zlfz 2 ) where y -

constant, ril-i; and g(zl,z 2 ) is either a constant or must have infinitely many

zeros on bzll - 1z2 1 1 1. In the latter case, a(zlz 2 ) must have infinitely

many zeros on I1zl - tz2 1 - 1, which has been shown to be impossible in the

last paragraph. Thus, g(zl,z2 ) - constant, and a(z1 ,z2) is relatively prime

with a(zl,z 2 ).

The essential features of the above discussion are summerized in the following

result.

Property 4.2.1: The transfer function of a passive fully recursive symmetric

half-plane filter, when expressed in irreducible rational form as in (4.2.11),

satisfies the following two conditions: (i) a(zl,z 2 ) * 0 for Iz1l - 1 and

1z2 1. < 1 i.e., H(zl,z 2 ) is analytic in Jzlf - 1 and 1z21 < 1. (ii) a(z 1 ,z 2 )
and a(zl,z 2 ) as defined in (4.2.12), do not have a common factor.

The condition (ii) in the above property can, in fact, be replaced by any one

of the conditions expressed in the following.

Assertion 4.2.1: Let a(zl,z2 ) be a polynomial in z and z2 such that a(zl,z 2 )

s 0 for 1z1  - 1 and 1z21 < 1. Then the following conditions are all

equivalent.
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(a) a(zl,z2) does not have infinitely many zeros on the distinguished boundary

1Z11 - 1z2 1 - 1.

(b) a(zlz 2 ) and a(zlz 2 ) are relatively prime polynomials.

(c) Each irreducible factor of a(z1 ,z2 ) has at least one zero in the domain
IZl 11 1, 1z21 > i

Proof: It has already been proved that (a) implies (b). To show that (b)

implies (a) observe that if for some 1z10 1 - 1z20 1 - 1, a(zl0 ,z20 ) - 0 then

from (4.2.12) a(zl0 ,Z20) - 0. Consequently, if a(z1 ,z2 ) has infinitely many

zeros on Izli - 1 then a(zlz 2 ) and a(zi,z 2 ) would have infinitely many conmon

zeros (on Izl1 - 1z21 - 1). Therefore, due to Bezout's theorem (1, a(z , 2

and a(zl,z 2 ) would not then be relatively prime polynomials. Thus, (a) and (1)

are equivalent.

Next, if al(z 11z2 ) is any irreducible factor of a(zl,z2 ) then obviously

a1 (zlz 2 ) * 0 or lzll - 1, 1z2 1 < 1. Furthermore, if a1(ZlZ 2 ) does not

contain any zero in z - , 1z2 1 > 1 then for any z, on 1Z11 - 1, a1 (zlZ 2) 0

0 in Iz2 1 < 1 as well as in I z2 1 > 1, and thus the values of z2 such that

al (zl,z2 ) - 0 must be on 1z2 1 - 1. Consequently, a1 (zlz 2 ), and thus a(zl,z2 )

would have infinitely many zeros on Iz11 -1z 21- 1. Therefore, (a) (or

equivalently (b)) implies (c).

To prove that (c) implies (b) let g - gcd(a,a) i.e., a - g.e, a gf, where e

and f are relatively prime polynomials. Then, as shown in (21 g - yg where y

is a constant. Assuming g to be a nonconstant polynomial, if each irreducible

factor of a contains at least one zero in zll - 1, Iz2 I > 1 then g and thus g

- yg must have a zero in 1z11 - 1, Iz2 1 > . However, this implies that the

polynomial g and thus, in view of a - ge, the polynomial a must have a zero in

1Z11 - 1, 1z2 1 < 1, which is a contradiction. Thus, g - constant and a and a

are relatively prime.

We also have the following important result.

Property 4.2.2a: If a rational function H-H(zl,z2 ) as in (4.2.11) is such that
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IHIl on Iz11-1z 2 1-1 except possibly at finite number of points where H is not
well defined and if H satisfies the conditions expressed in property 4.2.1(i)

(thus, if H(zl,z 2 ) is tranfer function of a passive fully recursive half plane
filter) then IHI_1 for all Izl[-l and 1z21<l. Furthermore, for some (z10,Z20)
with Izl01-1,1z 20 1<l. Then H(z10,z2) is a constant independent of z2.'

Assuming H to be nonconstant, the latter situation can arise for at most
finitely many values of z10 (with 2 101-1).

Proof: Due to property 4.2.1 (i) the denominator polynomial of H(z1,z2) cannot

be zero for some fixed Izl-l and arbitrary values of z2. Thus, if for any
Zl0 with Iz,01-1 we define Hi-Hl(Z 2 )-H(z 1 0 ,z 2 ) then due to our hypothesis H1 is
well defined, analytic in z21<1 and 1H11 l for all 1z21-l (except at the
possible poles). Thus, by maximum modulus theorem IHII<1 for all 1z2<l.
Since this is true for arbitrary Z10 on IZlml the first part follows.

To show the second part assume for contradiction that for some Iz101-1,

1z201<1, we have H(z10,Z20)-l. Then as shown above the maximum modulus theorem
applies to H1-H1 (z2 )-H1 (zl0,z2) and thus 1H1(z20)1-1 with 1z201-1 implies that
H1-H1 (z2 )-C-constant i.e., in view of (4.2.1) b(z10,Z2 ) - C a(z10,z2 ).
However, if H is nonconstant then b(z1,z2 ) and a(zl1,z2) are relatively prime

nonconstant polynomials. Consequently, b(z10,z2) and a(z10,z2) treated as
one-variable polynomials may fail to be relatively prime for at most finitely
many values of z10 [1). The second part is thus established.

In fact, the following result in Property 4.2.2b can also be proved. This
result shows that the polynomials of the type described in properties 4.2.1 i)
and 4.2.1 (ii) characterize denomination of irreducible rational functions

satisfying the (half-plane) boundedness property: JH l1 for Iz11-l, 1z21<1.

Property 4.2.2b: If H is a nonconstant irreducible rational function as
expressed in (4.2.11) and is such that JHJ<I for lz-l, 1z21<I then either a is
a constant or satisfies properties 4.2.1 (i) and 4.2.1 (ii).

Proof: Obviously it is impossible to have a-0 and b0 for any IZl.1lz 2 1<l,
because otherwise JIH would be unbounded there. If a-b-0 for some 1zl 0 i-1,

1z20 1<1 then consider an arbitrary small arc r 1 of 1Z1 -1 issuing from z10 .
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Let r2 be the continuous (121 arc traced out by z2 (beginning from z20 ) such

that a(zl,z 2 )-0 is satisfied. Note that since rI is assumed arbitrarily small,

due to the continuity property of zeros of a polynomial as a function of its

coefficients, r2 must lie completely within iz21<l. We next claim that for

z1crI there must exist values of z2cr2 such that a-0, b*0, because otherwise a
and b would have infinitely many common zeros, which due to Bezout's theorem

[3] violate the fact that a and b are relatively prime polynomials. However,

since r1 Czl,lzll-l} and r2ctz 2;1z2k1)< this latter conclusion has already been

shown to be impossible. Thus aoO for lzl-1,Iz2I<l.

Finally, if a(z10,z20)-0 for some Iz101-1z20 1-1 then b(z10,z20)-0 because

otherwise IHI~l would be violated in 1lz-l,z 21<l at the vicinity of

(zl0,z20 ). Thus existence of infinitely many such (z10,z20 ) would again

violate the relative primeness of a and b.

We next assume the filter to be (pseudo) lossless in the sense described

earlier i.e., equations (4.2.1) and (4.2.10) are satisfied with equality.

Consequently, from (4.2.10) we then have that for all 2-tuples (wiw2) with the

possible exception of finitely many (4.2.13) holds true.

JWWJU)i - 1 (4.2.13)

We first note that the rational transfer function H(zlz 2) of a (pseudo)

lossless fully recursive half-plane transfer function satisfies the property

that

H(zlz 2) H(z1 ,z2) - 1 (4.2.14)

To substantiate this result we observe from the definition of the operation "

that H(zl,z22 - H*(z1,z2) for Iz l-1z21-l. Consequently, from (4.2.13) it

follows that H(z1 ,z2)-H (zl~z2) for all 2-tuples (z1,z2 ) on 1z l-1z2I-i with

possible exception of at most finitely many values. Thus the two variable

rational function H(zl,z2) and H -(z1,z2) assume equal values at infinitely

many distinct points (zl,z 2), and consequently, due to analytic continuation

are identically same, i.e., H(zlz 2) - H-l(zl,z2) for all z1 and z2.
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For convenience of further exposition the following terminology will be

introduced. Any rational function H(z1 ,z2 ) as expressed in (4.2.11) will be

said to be a fully recursive half-plane all-pass function if H(zlz 2 ) satisfies

the conditions stated in property 4.2.1 and in equation (4.2.14). Thus,

transfer functions of (pseudo) lossless fully recursive half-plane filters are
fully recursive half-plane all-pass functions.

A function A(zlz 2 ) of two variables zl, z2, when expressible as a polynomial

in z2 with coefficients as rational functions in zI will be said to be a

pseudopolynomial (in z2 ). Thus, if A(zl,z2 ) is a pseudopolynomial then

N
A(zl,z 2 ) - O0(zl) + ml(zl)z 2 +...+ aN2 (z)z 2  (4.2.15)

where ak(zl)'s are rational functions in zj. With A(zlz 2 ) as given in

(4.2.15), where cN 2(z1 ) is not identically zero, the integer N2 will also be

denoted by deg 2A. Furthermore, the notation A(zlz 2 ) will be used to denote

the pseudo- polynomial obtained from A(zl,z 2 ) as:N2 2

A(ZlZ 2 ) - A(ZlZ 2 )z 
2  (4.2.16)

Two pseudopolynomials B(zlz 2 ) and C(zl,z 2 ) are said to be coprime if there is

no pseudopolynomial D(z1 ,z2 ) actually involving z2 such that B(zl,z2 ) -

D(zl,z 2 ) B1 (z1 ,Z2 ) and C(zl,z2 ) - D(zlz 2 ) C1 (zl,z2 ) for sone pseudopolynomials
Bl(zl,z 2 ) and C1 (zlz2 ). The following property then holds true.

Property 4.2.3: Any fully recursive half-plane all-pass function H(zlz 2 )
(thus, rational transfer function of (pseudo) lossless fully recursive

half-plane filter) can be expressed as follows:

H(zl,z2 ) -D(z1 ) [A(zlz 2 )/A(zl,z2 )]  (4.2.17)

where i) A(z 1 ,z 2) is a pseudopolynomial

N
ii) D(zI) - Zly [d(zl)/d(zl)J , where d(zl) is a polynomial in zi , y
is a constant of unit modulus and N - integer.
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iii) the pseudopolynomials A(z1 ,z2) and A(ziz 2 ) are coprime,

iv) A(ZlZ 2) # 0 for all Iz1 1-1, Iz2 1<l.

Conversely, any rational function expressible as in (4.2.17) with (i), (ii),

(iii) and (iv) in force is a fully recursive half-plane all-pass function.

Proof of property 4.2.3: Let H(z1 ,z2 ) - A(z1,z2 )/B(zlZ 2 ), where A - A(zlz 2 )

and B - B(zlz 2) are pseudopolynomials expressible as A - aN/AD and B - "D,

where in turn aN - aN(zl,z2 ), bN - bN(zl,z 2 ) are polynomials in both z and z2 ,

whereas aD - aD(zI ) and bD - bD(zl) are polynomials in z1 only.

We further assume that H - H(zlz 2 ) expressed as in (4.2.18) is in irreducible

rational form i.e., the pairs of polynomials (aN,aD), (bN,bD), (aN,bN) and

(bD,aD) are relatively prime.

H - (bDaN)/(aDbN) (4.2.18)

Then from (4.2.18) equations (4.2.19), (4.2.20) and (4.2.21) follows, where the

generic notation nip for denoting the degree of the polynomial p in the i-th

variable has been used.

" " " ND N1 I
H - H -1 (aDa.N)/&.9N) - l~a~..N/DaNI jzl NDz 2 1(4.2.19)

vN -nlbD +nlaN - 0, D m naD + nlbN >0 (4.2.20 a,b)

and N1 = n-aN nb N  (4.2.21)

Since H is analytic in 1z1 1-1, 1z21<l and neither aD nor can have a factor

z2 P it clearly follows that N1 > 0. Also, since H in (4.2.18) is in

irreducible rational form, it follows by comparing (4.2.18) and 2.19) that

vN N1  V D
Da aDbN z1  z2  , *%abN - bDaN z1  (4.2.2

where a - a(zl,z2 ) is a polynomial in z and z2. By inserting (4.2.22b) into

(4.2.18) and subsequently making use of the relations between aN and aN,
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between aD and aD and finally by using A aN/aD, (4.2.20) and (4.2.21) we

obtain the following

- -(nlaN nlbN 2aN

H - + aDbD)/(aDbD)JA/AJ-zl z2  (4.2.23)

2bN

By defining d - aDbD and noting the fact that E w A z2  we then have:

H - c(d/d)lAA) z - n  + (4.2.24)

Since H in (4.2.18) is irreducible and analytic in Iz11-l, z21<l we note that

aDbN cannot have a factor z 2' Invoking this fact and considering the - of

(4.2.22a) we then have:

-D D (4.2.25)

where in (4.2.25) k is the total multiplicity of z in (aDbN). By substituting
(4.2.25) into (4.2.22b) we obtain ~ D~a D (note that since from (4.2.20b) vD ,

degree of (aDb N ) in z I it obviously follows that vD-k>O). Consequently, it must

be true that a is a monomial involving z1 only i.e., is of the form

vD-k c nD -k
a-7z I  for some constant y. Then a yy* - WZ . Thus, riy-I. Therefore,

(4.2.24) yields (4.2.17) with N - vD-(nla + nl + k). Properties 4.2(i) and

4.2(ii) are thus established. To show ta 2(iii. holds true note that

- =aD n  - n  (4.2.26)

Consequently, if A and A has a pseudopolynomial common factor then it follows

from AN - /a and (4.2.26) that aN and aN must have a common factor involving

z2 . In view of (4.2.22a,b) then aDbN and bDaN would not be relatively prime,

thus violating the irreducibility of H in (4.2.18). Finally, to prove (iv)

note that it follows from property 4.2.1, (4.2.18) and (4.2.22b) that aDbN and

thus a is nonzero for Izll - 1, and

1z2 1 < 1.

The converse proposition follows trivially from the fact that any H - H(zlz 2 )
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satisfying (4.2.17) along with (i) through (iv) is necessarily analytic in 1z11

- z 1, 21 < 1 and has the property of HHi 1 on jzl1 I z2 I 1
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4.3. F=LLY m EXSVE SYNKEMIC LFm-PLA LOSSLESS 1'TW-POS:

Characterizations of fully recursive symmetric half- plane passive as well

as lossless one-port filters have been established in the previous section in

terms of the transfer function of the filter. In this section we make use of

the results of the previous section to characterize fully recursive symmetric

half-plane lossless two-ports. In particular, a convenient representation for

such two-ports analogous to the Belevitch canonical representation of

continuous time 1-D lossless circuits of classical network theory (8) is

developed. This representation is then subsequently used in section 4.4 to

synthesize the filter in a specific structure.

A two-port system of the type under consideration is lossless if (4.3.1)

holds true for any finite (pseudo) energy inputs x1(nln 2) and x2(nl,n2).

ZElyl(nl,n2)1 2 + EZEY 2(nl,n2)1 2 . Er~x1(n,n2)12 + EEix 2(n1ln2) 12

(4.3.1)

Considering x2 (nl,n2 ) - 0 for all n1, n2 we then have from (4.3.1) that for

any finite (pseudo) energy x1(nln 2):
2 2 2

EZlyl(nl,n2)12 < r1x1(n1ln2)I 
2, ZZY 2(nl,n2)1  < ZZX 1(nln 2)12

(4.3.2a,b)

On the other hand, if S - S(zlz 2 ) - [Sij (z ,z2)] is the transfer function of

the two-port then for X2 (z1 ,z2 ) a 0 we have Y1(zlZ 2 ) - S1 1 (z 1 z,2 )Xl(zlz 2 and

Y2(zlz2) - S21(zlz2)XI(zlz 2), where as in last section capital letters are

used to denote 2-D z-transforms. Thus, due to (4.3.2a) and (4.3.2b) the

transfer functions S1I - S1 1(zlz 2 ) and S21 m S21(zlz 2) are (pseudo) passive,

and thus satisfy property 4.2.1. Similary, by considering xI(n1ln1 ) - 0 for

all ni, n2 it can be shown that S12 m S12(zlz2) and S22 - S22(zlz2) satisfy

Property 4.2.1.

Furthermore, by considering 2-D Parseval's theorem (4.3.1) can be made to yield
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(4.3.3) where the column vector X(ua,=) (X1 (waw 2) X(yl, )) and.

denotes the combined operation of complex conjugation and matrix transposition.

X (w1 ')2(2 - S ( , )s(g,,w)x( ,w) - 0 (4.3.3)

Since (4.3.3) holds for any X(I,o)2 ) it follows that for any 2-tuple (Wi,w 2 )
except possibly finitely many, we have S (wIw 2 )S(w1 ,w2 ) - 12. This latter

equation, by exploiting arguments similar to those used in the paragraph

following (4.2.14) yields that for all zI, z2:

S(z11z2) S(zlz 2) - 12 (4.3.4)

A (2 x 2) rational matrix S - S(zlz 2) is said to be fully recursive half-plane
lossless bounded if: (i) each entry of S satisfies the conditions expressed in
properties 4.2.1 (i), (ii) and equation (4.3.4) holds true.

Note that the transfer function of a fully recursive half- plane lossless

two-port is necessarily of the above type. As a consequence of property

4.2.2, we then have the following important conclusion.

Proposition 4.3.1: Each entry of a fully recursive half-plane bounded matrix S

- [SijI satisfies IS ijI < 1 for all IzlI-l and Iz2 <l.I
* 2 2

Proof: Since on Izl - Iz21-1, we have S *S - 12, and thus I1l2+ IS21 1 - 1,

I 2212+ S121 2 - 1, which in turn imply ISijI < 1 for all i,j. The result then
follows from property 4.2.2.

Consider next a fully recursive half-plane lossless bounded matrix S. Since
each entry of S satisfies property 4.2.1, the rational fnction det H also

satisfies property 4.2.1. Also, it follows from (4.3.4) that (det S)(det) - 1.

Thus, S is a fully recursive symmetic half-plane all-pass function as defined
in section 4.2 and admits of the representation (4.2.17) described in property

4.2.3, i.e., (4.3.5) holds.

det S - -D.(A/A) (4.3.5)
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Consequently, it follows from (4.3.4) and (4.3.5) that

S11 -- (/D)( /A)S 2 2 ; S2 1 - (1/D)(X/A)S12  (4.3.6a,b)

S12 - (1/D)(A)S 21 ; S22 -- (I/D)(A/A)Sll (4.3.7a,b)

It may be shown via the operation - that (4.3.6a) is identical with (4.3.7b),

where as (4.3.6b) is identical with (4.3.7a). Now since S11 in (4.3.7b)

satisfies property 4.2.1, it follows that when S11 is expressed in irreducible

rational form, each of the irreducible factors of the denominator polynomial

must have zeros in Izl1-l, 1z2 1>l. However, due to property 4.2.1, S22 is

analytic in Iz11-1, lz2 1<l and thus S22 is analytic in Iz11-l, Iz2 1>l. This is

possible, however, only if the denominator polynomial of S11 in irreducible

rational form is completely cancelled by the numerator of (A/A). Thus,

(4.3.8a) follows, where B is a pseudopolynomial. By inserting (4.3.8a) in

(4.3.7b) and performing the operation -, (4.3.8b) follows via the use of the

identity D - 1. Equations (4.3.9a,b) follow from (4.3.7a) in a similar

manner, where again C is a pseudo-polynomial.

S11 - B/A, S22 - - D(B/A) (4.3.8a,b)

S21- C/A, S12 - D(C/A) (4.3.9a,b)

Inserting (4.3.8) and (4.3.9) in the expression for (det S) in (4.3.5) we then

have

AA - BB + CC (4.3.10)

Also, since $22 and S12 are analytic in Iz1 1-1, lz2 1<l we have from (4.3.8b)
and (4.3.9b) that:

deg2B < deg2A ; deg2C < deg2A (4.3.11)

The above discussion can be succinctly expressed in the following
representation of a fully recursive symmetric half- plane lossless bounded

matrix.

Property 4.3.1: Any fully recursive symmetric half-plane lossless bounded
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matrix can be represented in terms of three pseudopolynomials A, B and C as in
(4.3.8) and (4.3.9), where A is nonzero in Iz1-l', 1z21<1; the

pseudopolynomials A and A are coprime; and furthermore (4.3.10), (4.3.11) hold
true. Conversely, any matrix, which admits of the above representation is fully

recursive symetric half-plane bounded.

Since property 4.2.1 is automatically satisfied by each entry of a matrix S

expressed via (4.3.8), (4.3.9) and (4.3.10), to establish the above converse

proposition we only need to observe that straightforward algebraic manipulation

with (4.3.8) through (4.3.10) yield (4.3.4). For convenience of exposition any

S expressed as in (4.3.8) and (4.3.9) will be referred to as in standard form.

A fully recursive half-plane lossless two-port can be alternatively described

by means of a chain matrix T - T(zl,z2 ) defined as in (4.3.12)., where X, X 2

and Y Y 2 are respective inputs and output signals from ports 1 and 2.

XZ 1 Y2 4.3.12)

It can be easily shown from (4.3.8) through (4.3.12) that the following

property characterizes the chain matrices of the type described above.

Property 4.3.1': The chain matrix T - (T ijI associated with a fully recursive

half-plane two-port is lossless if and only if it can be expressed as

Tll -DA/C ; T12 - B/C (4.3.13a,b)

T21 - DBz2nA/C ; T22 - A/C (4.3.14a,b)

where nA - deg2A, and A, B, C and D satisfies the same restrictions described

in property 4.3.1. Also, any T as in (4.3.13), (4.3.14) is said to be in

standard form.
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4.4. SYNTESIS Or UJLLY RECSIVE HALF-PLANE WSS

A procedure for synthesizing fully recursive half-plane lossless two-ports as

an interconnection of more elementary building blocks of the same type will be

developed in this section. The synthesis algorithm can be viewed as a

generalization of the algorithm for synthesizing 1-D discrete lossless

two-ports as described by Rao and Kailath in (6]. Our synthesis procedure

exploits the unique feature of the algorithm described in (6) that (in l-D)

given (polynomials) A, B, C the arithmetic operations needed to be performed on

the coefficients of A, B and C in each cycle of the algorithm requires rational

operations only. To the best of our knowledge this is the only algorithm of

the above mentioned type available for synthesis of 1-D discrete as well as

continuous domain lossless two-ports including those in classical network

theory [81. (All other algorithms known prior to (61 required nonrational

operations e.g., polynomial factorization). The basic structure of the filter

to be presently synthesized would thus be the same as in [6), whereas the

elementary building blocks are certain 1-D two port sections to be referred to

as the generalized Gray-Markel sections (GGII section) and z2-type delays, each

of which are fully recursive half-plane lossless.

A generalized Gray-Markel section is a 1-D two port as shown in figure 4.4.1

where the l-D transfer functions (assumed rational) k1 and k2 satisfy the

relationsl, .:

k1k1 + k2k2 " 1 (4.4.1)

and are such that k1 (and thus k2 in view of (4.4.1)) satisfies k1k1  I k 11 <

1 everywhere on jzl - 1 with the possible exception of finite number of values

of z1 for which we may have k1k, - Jkll 2 = 1.

We first note that given any rational function k1 of z1 satisfying the above

conditions it is always possible to find a rational function k2 satisfying the

same conditions as that of k1 along with (4.4.1). (The role of k1 and k2 can

obviously be interchanged in the present considerations). To show this let k1

nl/d where nj, d, are polynomials in z1 . Then (1 - klk1 ) - Nl/(dld1 ), where
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N - d1d1-n1n . Thus, N1 1 Ni, and for all z1 on Iz1l --1, Nl(z I) is real and
we have that N1 (z1 ) > 0 as a consequence of k1k, _ 1. Therefore, the

(spectral) factorization N1 - n2n2, where n2 is a polynomial in z holds.

Also, by (possibly) rearranging the irreducible factors of (d1d ) to write dId 1

- d 2d2, where d2 - polynomial, we can have k2 - n2/d2 such that (4.4.1) is

satisfied. Note that since the factorizations N2 - n2n2 and d1dI - d2 d2 are

not unique the k2  so obtained is not unique unless further restrictions are

imposed.

The transfer function matrix SG - SG(z1) associated with such a GGM section can

be expressed as in (4.4.2a), whereas the corresponding chain matrix T is given
in (4.4.2b).

S - j TG - (1/k2) - (4.4.2a,b)

Since SG  in (4.4.2a) satisfies the representation described in property 4.3.1

with A - 1, B - ki, C M k2 and D - 1 the GGM section is indeed a fully

recursive half-plane lossless two-port.

To proceed with the synthesis of a prescribed fully recursive half-plane

lossless bounded matrix S or, equivalently, corresponding chain matrix T as

described respectively in property 4.3.1 or 4.3.1', we first note that in view

of porposition 3.1 the rational function: k - k1 (z1 ) - S1 1 (Z,0) satisfies

1kll < 1 for all 1zl1 - 1 with the possible exception of finite number of

values of z where JklI-1. Therefore, in view of the preceeding discussion k1

defines a GGC section i.e., a k2 can be found such that 1k 2 1<l everywhere on

jzljl with the possible exception of finite number of values of zi, for which

1k2 1-1 and that (4.4.1) is satisfied.

Step 1: The first step is to extract a GGM section with k - Sll(zl,0) from

prescribed S or T as shown in figure 4.4.2. Since a cascade connection of two

two-ports amounts to multiplication of the corresponding chain matrices, the

chain matrix of the remaining two-port is then T' - TG- T. From (4.3.13),
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(4.3.14) and (4.4.2b) we can write:

nAD(A-k 1 BZ2  k

T' -(1/C 2)(4.4.3)
LD(Bz2 A -nklA) A-k1B

-k1 A)

We next define the pseudopolynomials A', B', C' and the I-D rational function

D' as in (4.4.4) and (4.4.5) below, where p-p(z ) is the conjugate reciprocal
1

polynomial factor of largest degree present in the numerator of A-k1B, when

expressed in irreducible rational form.

-nA

pAl' - A(1-k1S11) A-k1Bz2  ; pC' -Ck2  (4.4.4a,b)

pB' - A(SII-k1 ) = B-k1A ; D' - D(p/p) (4.4.5a,b)

We claim that deg2A'- deg2A." To prove this, clearly deg2A' _ deg2A and note
that (4.4.4a) yields pA'/A - l-k1Sll, which implies that if deg2A' < deg 2A then

for arbitrary z1 we would have k1 (z1 )S11 (Z1 10) - is 11 (Zl,0)I 1 - 1. The

impossibility of this latter situation has already been demonstrated. As a

consequence of this we can write T' as in (4.4.6) and (4.4.7), where nA, -

deg2 A' - deg2 A.

Tji - D'A'/C' ; T2 = B'/C' (4.4.6a,b)zn A,/c, 
lI

Tl D'B'z2  /C ; T 2 -/C' (4.4.7a,b)

We next claim that the pseudopolynomial A' satisfies the properties that '

# 0 for Iz1 1=I, Iz 2 1<1 and that k' is coprime with A'. To prove this we write

A' - " in irreducible -ational form, and thus A - (AL/M).z , where

- integer and A /A is in irreducible rational form. Thus, from the

1A polynomial p is said to be conjugate reciprocal if p-y.p for some constant

Y.
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definition of A it follows that A. is devoid of conjugate reciprocal

polynomial factors in z1  only. If we assume for the prupose of a proof by

contradiction that for some value of zl-Zl 0 ,Z2 Z 2 0 with 1zl01-1, Iz20 l<l we

have A'-O i.e., %-O then since A. cannot have a factor (zl-zl0 ), by changing

the value of z I from Z10 along an arbitrarily small arc r, of the unit circle
1z1 1-i it would be possible to find a continuous [121 set (zlz 2 ) of zeros of

A! i.e., also of A' with zlcrlc~zl;IzlJl and lz21<l.

Also, since it follows from (4.4.4a) and deg 2BnA-n A ' that pA'-A(I-k1SI1)

and AsO in 1zl 1 -l, Iz2 <l (cf. property 4.3.1) we would then have that for all

zle1r there exists some z2 in lz21<l. such that k1S11-l. Since Iklll,Slll_<l

for all (zll-llz 2 l<l (cf. Proposition 4.3.1) the last conclusion implies that

there exists z2 in 1z2 1<l such that Ik,1-1S 11 (zl,0)I-l and IS11(zl,z 2 )1-1 for

all z 1 r. However, this last conclusion leads to a contradiction in view of

Property 4.2.2a. Thus, A'*0 i.e., 0 for IZl1-l,lz 2 1<l.

Also, since due to Property 4.2.2a JklJ-1Sll (zl,0)J-1 is possible for at

most finite number of values of zI, for izl1 -1z21-i we have ISiiiI<1 and KeO for

at most finite number of exceptions on the distinguished boundary of the unit
bi-disc, we conclude from pk'-A(l-k 1 S11 ) that X', thus A may have at most

finite number of zeros on Izl1'1z21-l. Since as shown earlier 0 in

IZI-l,1221<1 it follows from Assertion 4.2.1 that AN and AN are relatively
prime polynomials. Consequently, the pseudopolynomials A and A' are relatively
prime.

Finally, straightforward algebraic manipulation along with (4.4.1) yields

AA' - BB' + CC' , whereas deg 2A' _ deg 2B', deg 2A' _ deg2C' follow from

(4.4.4a,b), (4.4.5), (4.3.11) and nA-nA,. Since, clearly D' as in (4.4.5b)

possesses the requisite properties for T' to be in standard form, in view of

Property 4.3.1' all the conditions necessary for T - IT ij), as given in

(4.4.6), (4.4.7), to be a fully recursive half-plane lossless two-port chain

matrix are satisfied.

We further note that as a consequence of the choice k1-S11(Z110) we have

from (4.4.5a) that B'(zlO) - 0 for arbitrary z1 i.e., the pseudopolynomial B'

contains z 2 as a factor. Also, if C contains a pseudopolynomial factor z2 then

105



so does C'.

Step 2: In the next step we form a fully recursive half-plane two port T( 2 ) by

interchanging the two output terminals in each port of T' as shown in figure

4.4.3. It can be easily shown that T(2 ) can then be written in terms of

pseudopolynomials A S(2), C(2 ) and the rational function D in standard

form as expressed in property 4.3.1', where

B(2 )  col (2 )  B', D(2 ) . -D' (4.4.8)

Ste 3: A GGQ section is then extracted from the two-port with chain matrix

T by iterating step 1 on T(2 ) to get a fully recursive half-plane lossless

two-port chain matrix T( 3 ) . If pseudopolynomials AM3 , B( 3 ) , C ( 3 ) and rational

function D( 3 ) represent T( 3 ) in standard form as in property 4.3.1' then B( 3 )

would have a factor z2 . Also, since from (4.4.4b) and (4.4.8) we have C( 3 ) -

)k 2  B'k2 (3, where k2(3) defines the GQ' section presently extracted,

and B' has a -actor z we conclude that C 3 ) has a factor z From this and the

fact that A A B B + C()C 3 it follows thatA - 0 for z2 -

0 and for arbitrary z1. Since A(3)0 0 for 1zlj - 1 and z < 1, we conclude
(3) . 0 for z - 0 and for arbitrary z Consequently, ?3)
A z2  Zl. ty has a factor z

and it is possible to write, for some pseudopolynomials A B(4 ) and C
that

A( 4 ) - z2A(3), B(4) - zZB( 3 ) , C -( 4 )  z2C(3) (4.4.9)

Step 4: The last step in the synthesis cycle is to extract a z2 type delay

from as in figure 4.4.4 to produce a two-port with chain matrix T
which in standard form can be expressed in terms of A B 4  C 4 )

Furthermore, A ) € 0 for Iz11 - 1, 1z21 < 1; _ 4) (3) can have at

most finitely many zeros on Izl1 - Iz2 1 - 1. Also, it follows from (4.4.9) and

losslessness of T(3) that

;(4)A (4 )  B(4)B (4 ) + C(4) (4 )  (4.4.10)

and deg2B(4 ) < deg2A(4 ), deg2C( < deg2A(4 )
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Thus, the two-port associated with T( 4 ) is fully recursive half-plane lossless.

Furthermore, note that

deg2A(4) - deg2A(3}-l - deg 2A(2)_l - deg2A'-l - deg2 A-l,

where the first equality follows from (4.4.9); the second and the fourth from

the fact that in step 1 we have nA - nA,; and the third from (4.4.8).

Consequently, after iterating deg2A times the cyclic algorithmdescribed in

Steps 1 through 4, we obtain a lossless chain matrix Tf independent of z 2 ,

which in standard form is described by Af - Af(zl), Bf - Bf(z 1 ), Cf - Cf(z 1 )
and D - Df{(z).

Terminal Step: In the final step we extract another GGM section as in Step 1
to produce a fully recursive half-plane lossless two-port S with A0 , B0 , C0
and D0 in standard form. Since Af, Bf are functions of zI only it follows from
(4.4.5a) that 0 a 0. Also, since A0 % - B00 + C0c0 and AD - A 0 for all

IZli - 1 the 1-D transfer functions (S0}12 - DoC0/A0 and - CV/AQ are

both well defined and of unit modulus on jzlj - 1 i.e., they are all-pass

functions.2  The realization for such a two-port is shown in figure 4.4.5. The
resulting composite filter structure is as shown in figure 4.4.6.

2Note that (S0)12 and (S0)21 are not necessarily stable rational functions,

i.e., may have poles in lzll<l.
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4.5. DESIGN OF 2-D FULLY REC3SIVE 5%Lr-PEANE FILTERS:

Two-dimensional filters with only two kinds of symmetries in their

magnitude responses, namely the fan type symmetry and the circular symmetry are
of practical interest. The locii of canstant gain in the o-w2 plane for the
fan filters are required to be approximate straight lines, whereas those for
the circularly symmetric filters are required to be closed circles in an
approximate sense. In addition, we also require the pass (or the stop) region
of the fan filter to be the region approximately lying within the straight

lines w - 2 and wi - - a2 for some O<oL <1.

Our design proceeds by requiring the transfer function S2 1 - CA (cf.

equation (4.3.9a)) of the lossless two-port S to have the desired

characteristics. However, unlike the corresponding problem in l-D, due to

nonfactorability of m-D polynomials it is in general not possible to find a

pseudo-polynomial B satisfying (4.3.10) from A and C. To circumvent this

problem it will be further assumed that the two-port is either symmetric i.e.,

S11 - S221, $21 - S22 or antimetric i.e., S 11 - 22' $21 - S12: nThus, in the

symmetric and in the antimetric case we repectively have B - -DBz2 A

B - DBz 2 , whereas we also have C - DCz 2  in both cases. We next define two

rational functions S1 and S2 as in (4.5.1) and 5.2) respectively for symmetric

or antimetric two ports.

S1 - (B + C)A, S2 = (B - C)/A (4.5.1a,b)

s - (B + jC)/A, S2 - - jC)/A (4.5.1'a,b)

From (4.5.1) it is easily verified that SIS1 - S2S2 - 1. Thus for each i, JSil

- 1 for all Z:11 - 1z21 - 1 except possibly finitely many values where it is
undefined. Furthermore, A # 0 for Jz11 -1, 1z21 < 1. Thus via Property 4.2.2a
it follows that Si, for each i - 1,2 in (4.5.1) must be a fully recursive

half-plane all-pass function. Exactly same conclusions hold for S1 and S2 in
(4.5.1'). Consequently, S1, S2 can be expressed as in (4.5.3), where DI, D2
and A,, A2 satisfy properties analogous to D and A in Property 4.2.3.

s I - - D lA/A_, S2 - - D2 (4.5.3a,b)
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Note that even if A, B, C are real rational functions, S1 and S2 are real in

(4.5.1ab) but not in (4.5.1'a,b). Thus, a symmetric filter can be realized by

making use of the relation $21 - C/A - (S1-S2 )/2, where the one-ports S1 and S2

are realized as in Appendix A. Although S21 - C/A - - j(S1-S2 ) holds true in

the antimetric case, a realization in terms of this last mentioned equation is

not feasible due to the presence of the factor j unless complex filter

realizations are called for. In this case, the pseudopolynomials A, B, C which

are real, can be found from (4.5.1'a,b) and subsequently S21 can be realized as
being embedded in a real two-port S described by A, B, C in standard form. The

design problem then boils down to appropriately choosing the real 1-D rational

functions DI, D2 , and real pseudopolynomials A1 , A2 so that the frequency

response requirements on IS211 are satisfied. This latter step may be carried

out by using numerical optimization (e.g. Levenberg-Marquadt). For the purpose

of numerical optimization, however, the following symmetry observations have

the effect of reducing the number of parameters to be optimized.

Note that if 1$2 1 (w1 'w2)I possesses either the fan-type or the circular-type

symmetry then IS21 (w,2)1 must have, in particular, the so called quadrantal

symmetry (141 i.e., IS21 ((,dw2)I is unaltered if the signs of either w or 2

or both are changed. This requirement coupled with the stability property of

S21 demands that the denominater pseudopolynomial of $21, and thus A1 and A2 in

(4.5.3) satisfy a certain factorability property. It then proves to be

expedient to carry out the optimization procedure on these factors rather than

on the pseudopolynomials A ,, A2 .
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APPEDIX:

In this appendix we prove that a fully recursive symmetric half-plane all-pass
function H-H(zzz2 ) can be synthesized as an interconnection of GG1 sections
(cf. Section 4.3) and z2-type delays. This can be considered to be a

generalized form of Schur's algorithm (91.

Let k - k1(z1) - H(zl,0). Since H is as in Property 4.2.3 it follows from

Property 4.2.2a that k1 <l for all Jz1 -l with the possible exception of

finite number of values of zI, where Ikl1-l. Thus, a k2 satisfying (4.4.2) can
be found i.e., k and k2 defines a GGC section. Consider next the function H1
- H1 (zlz 2 ) defined as in (4.A1.1), which can be interpreted as the residual

transfer function after extraction of the GGM section just mentioned from H1.

H' - (H - k1 )/(1 - kH) (4.A1.1)

From (4.2.17) it then follows that H' - - pA'/B', where pA' - DA + klA, B' -A
+ k1DA, p being the conjugate reciprocal factor of largest degree present in

the numerator of (DA + k1X) when expressed in irreducible rational form. Next,
since we have D - D71 it follows that PA'/A - D(1-k1H). Consequently, if deg2
A' < deg A then we would have k1H(zl,0) -IH(z1,0)12- 1 for arbitrary zI, which
is impossible (cf. Property 4.2.2a). Thus, deg2A'- deg A. It then clearly

follows that pk - D(A + k1DA) - DB', thus H' - - D1(A'/A'); D1 - D(p/p).
Also, since A' - - A(H-k1 ) it follows that A' - 0 for z2 -0 and arbitrary z1.
Thus, the pseudopolynomial A' has a factor z2. By defining A1 via zA1 - A' we

can write H 1 - z 2H', where H1 - - D1(A1A1 ). Note that H1 can be constructed

simply by extracting a z2-type delay from H'. Clearly, D1 satisfies condition

(ii) of property 4.2.3. Also, by following arguments similar to that used
after (4.4.7a,b) it can be shown that A, - ' * 0 for IzlJ - 1, 1z2 1 < 1 and
the pseudopolynomials A1 and A1 are coprime. Thus, condition (iii) and (iv) of
Property 4.2.3 are satisfied by H1 , which has now been proved to be fully
recursive symmetric half-plane lossless. Since deg 2A1 - deg2A' - 1 - deg 2A - 1

the procedure just described when applied deg2A times yields a circuit as shown
in figure 4.A.1, in which the terminating section is an all-pass (not

necessarily stable) in z1 only.
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p! 5

CONCLUSIci AN) FUR1M IWM

5.1 CO LIO6:

Die to potential applications of multidimensional passive filtering schemes in

manifold areas of signal processing e.g., including frequency filtering,

modelling of random fields associated with detection and estimation of

parameters of multidimensional signals, fundamental issues relating to the

description of passive m-D systems and their synthesizability have been

addressed in the present report. First, various classes of stable

multidimensional polynomials essential to the discrete domain description of

passive m-D systems has been delineated. The synthesizability of quarter plane

type causal m-D digital filters has been investigated in a very general

setting. Finally, due to its potential benefit to be derived from currently

emerging parallel hardware architechtures [1], [2], a method of passive

filtering within the framework of an alternative recursive scheme, namely, the

fully recursive half-plane recursive scheme has been introduced and studied.

Filter synthesis procedures within this framework has also been examined.

A major problem in processing such M-D discrete signals in real time is the

large amount of data rate involved. Conventional digital filtering algorithms,

which process data sequentially, is therefore, inappropriate for such

processing purposes. In spite of the fact that, as in the 1-D case, the basic

linear algebra operations such as vector matrix multiplication form the core of

many m-D signal processing algorithms available, a detail study of their fast

VLSI/optical implementation, which utilizes the underlying structure of

multidimensional problems is yet unavailable. On the other hand, a consistent

scattering formalism for passive multidimensional systems has begun to emerge

as a result of the presently reported work, it should now be possible to

undertake an investigation into the design of a broad variety of concurrent,

numerically stable and fault tolerant m-D signal processing algorithms.
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5.2. ,UR71 WM:

Study of novel multidimensional signal processing algorithms of the concurrent
type for implementation in VLSI/optical architectures via the framework of
passive scattering theory should thus form the major emphasis of future
research in this area. Two generic considerations ensuing from the present work
work may potentially form the basis of this investigation. To elaborate on the

first, note that traditionally most m-D processing (filtering) have relied on

the quarter-plane type recursion schemes in the causal order of data points.

However, since unlike l-D, in most multidimensional applications the
independent coordinates describing the signal may not have temporal, but only
spatial significance, to impose such a causality restriction is not only

unnecessary, but it may cause severe drawback in fully exploiting the
concurrency offered by the optical architechtures. Due to this, the fully
recursive symmetric half-plane scheme, seems to be most appropriate for a large

number of m-D signal processing problems of diverse nature. To justify this

remark in 2-D, it may noted that the computational model under consideration

have the remarkable property that all data points belonging to a row in the 2-D

lattice space may be simultaneously (in parallel) computed from the data points

belonging to an adjacent row in the 2-D lattice space. Furthermore, as has been

demonstrated in the case of frequency filtering in chapter 4, the computation

just referred to, in fact, involves computing the convolution of the adjacent
rows with a fixed 1-D sequence determined by the transfer function of the
filter. Since 1-D convolution, among other linear algebra operations, are known

to easily yield to high speed optical architechtures using acousto-optic

devices [1], the time complexity of the entire computation can be shown to be

drastically less than filters using other recursive schemes. (In fact, the
speed of this 2-D processing scheme proves to be of comparable order to that of

a 1-D filter, when an implementation of this type is called for). Furthermore,
since for certain 3-D applications, (e.g., in the processing of 3-D time

varying imagery) this type of processing corresponds to processing all of the

data points in a given frame of the image simultaneously, while the direction

of filter recursion corresponds to the direction of flow of time, the

processing scheme under consideration is not only adequate for fast optical

implementation, but is the most natural choice unlike the somewhat contrived

quarter plane causal recursive scheme, which has been almost universally
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adopted in the m-D scattering based signal processing techniques so far.

A second possibility of optical implementation of passive filtering algorithms

arises from the fact that 1-D digital lattice filters has been shown to be

easily implementable via analog optical devices such as the single mode fiber

and directional couplers [1). The obeservation that the digital lattice section

(also known as the Gray-Markel section) and variations of it can be implemented

in terms of optics, can be potentially utilized in the implementation of

passive m-D digital filters. This conclusion derives from the fact that, as

shown in chapters 3 and 4 any passive m-D digital filter can, in fact, be

implemented as interconnection of modular building blocks each of which can in

turn be viewed as interconnections of a small number of digital lattice

sections. To carry this point little further let us note that single mode

optical fibers and directional couplers can be interpreted as passive digital

two-port networks [11 and their propagation characteristics can, in fact, be

described in terms of scattering parameters, which are exactly the tools in

deriving a large variety of l-D and m-D signal processing algorithms of

interest to us in the present context. However, we are unaware of any existing

work which develops this connection further so as to tailor specific m-D

algorithms to fit into the optical architechtures.
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